Advanced JavaScript Essentials

Lesson 1:Introduction to Advanced JavaScript
Welcome to Advanced JavaScript
Accessing the Console

Using the Console

Good Programming Style Practices

Testing Code in the Console

Interacting Directly in the Console

Commenting Your Code

Quiz 1
Lesson 2: Know Your Types
Know Your Types: Primitives and Objects

Primitives

Some Interesting Numbers
Objects

Enumerating Object Properties
Primitives That Act like Objects
JavaScriptis Dynamically Typed

Quiz 1 Project1 Project2 Project3
Lesson 3: Truthy, Falsey, and Equality
Truthy, Falsey, and Equality
Values That are Truthy or Falsey

Implied Typecasting

Testing Equality
Objects and Truthy-ness

Objects and Equality

Quiz 1 Project1 Project?2

Lesson 4:Constructing Objects
Constructing JavaScript Objects
Constructing an Object with a Constructor Function

Constructing an Object Using a Literal

Constructing an Object Using a Generic Object Constructor
So, What's the Best Way to Make an Object?

Initializing Values in Constructors

this

Constructing Array Objects

Quiz 1 Project1 Project 2

Lesson 5: Prototypes and Inheritance
Object-Oriented Programming in JavaScript

instanceof

Prototypes

Prototypes of Literal Objects

Whatis a Prototype Good For?

The Prototype Chain

Prototypal Inheritance

When are Prototype Objects Created?



homework/IntroToAdvJS_quiz.quiz.html
homework/Types_quiz.quiz.html
homework/Types_proj1.project.html
homework/Types_proj2.project.html
homework/Types_proj3.project.html
homework/TruthyFalsey_quiz.quiz.html
homework/TruthyFalsey_proj1.project.html
homework/TruthyFalsey_proj2.project.html
homework/ConstructingObjects_quiz.quiz.html
homework/ConstructingObjects_proj1.project.html
homework/ConstructingObjects_proj2.project.html

hasOwnProperty

proto
Setting the Prototype Property to an Object Yourself

Quiz 1 Quiz 2 Project1 Project 2
Lesson 6: Functions

JavaScript Functions

Whatis a Function?

Different Ways of Defining a Function

Functions as First Class Values

Anonymous Functions

Returning a Function from a Function

Functions as Callbacks

Calling Functions: Pass-by-Value

Return

Quiz 1 Quiz 2 Project1 Project?2
Lesson 7:Scope
Scope
Variable Scope
Function Scope
Hoisting
Nested Functions
Lexical Scoping
Scope Chains
Inspecting the Scope Chain

Quiz 1 Project 1
Lesson 8:Invoking Functions

Invoking Functions

Different Ways to Invoke Functions

What Happens to this When You Invoke a Function

Nested Functions
When You Wantto Control How this is Defined
call() and apply()

Function Arguments

The Four Ways to Invoke a Function

Quiz 1 Project1 Project?2

Lesson 9:Invocation Patterns

Invocation Patterns

Recursion

Why Use Recursion?

Chaining (a la jQuery)

Static vs. Instance Methods

Quiz 1 Project1 Project2 Project 3
Lesson 10: Encapsulation and APls

Encapsulation and APls
Privacy, Please

An Example
Private Variables



homework/Prototypes_quiz1.quiz.html
homework/Prototypes_quiz2.quiz.html
homework/Prototypes_proj1.project.html
homework/Prototypes_proj2.project.html
homework/Functions_quiz1.quiz.html
homework/Functions_quiz2.quiz.html
homework/Functions_proj1.project.html
homework/Functions_proj2.project.html
homework/Scope_quiz.quiz.html
homework/Scope_proj.project.html
homework/InvokingFunctions_quiz.quiz.html
homework/InvokingFunctions_proj1.project.html
homework/InvokingFunctions_proj2.project.html
homework/InvocationPatterns_quiz.quiz.html
homework/InvocationPatterns_proj1.project.html
homework/InvocationPatterns_proj2.project.html
homework/InvocationPatterns_proj3.project.html

Private Functions
A Public Method
Acessing a Public Method from a Private Function

Encapsulation and APls

Quiz 1 Project1 Project 2

Lesson 11: Closures
Closures
Making a Closure
Whatis a Closure?
Playing with Closures

Each Closure is Unique
Closures Might Not Always Act Like You Expect

Closures for Methods

Using Closures
Where We've Used Closures Before

Quiz 1 Project 1

Lesson 12: The Module Pattern

Module Pattern

IIFE or Immediately Invoked Function Expressions
The Module Pattern
Using the Module Pattern with JavaScript Libraries
A Shopping Basket Using the Module Pattern
Why Not JustUse an Object Constructor?

Quiz 1 Project 1
Lesson 13: The JavaScript Environment
JavaScript Runs in an Environment
The Core Language, and the Environment's Extensions

How the Browser Runs JavaScript Code

Including JavaScriptin Your Page

The JavaScript EventLoop

The Event Queue

Asynchronous Programming
JavaScriptin Environments Other Than the Browser

Quiz 1 Project 1
Lesson 14: ECMAScript 5.1
The ECMAScript Standard for JavaScript
Strict Mode
New Methods
Object Property Descriptors

Sealing and Freezing Obijects

Creating Objects

Project 1 Project 2

Copyright © 1998-2014 O'Reijlly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.



homework/EncapsulationAndAPIs_quiz.quiz.html
homework/EncapsulationAndAPIs_proj1.project.html
homework/EncapsulationAndAPIs_proj2.project.html
homework/Closures_quiz.quiz.html
homework/Closures_proj.project.html
homework/ModulePattern_quiz.quiz.html
homework/ModulePattern_proj.project.html
homework/JavaScriptEnvironment_quiz.quiz.html
homework/JavaScriptEnvironment_proj.project.html
homework/ECMAScript5_proj1.project.html
homework/ECMAScript5_proj2.project.html
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Introduction to Advanced JavaScript

Welcome to the O'Reilly School of Technology's (OST) Introduction to Advanced JavaScript course.

Course Objectives

When you complete this course, you will be able to:

e create an object-oriented JavaScript program.

e structure your programs to make use of encapsulation where needed.

e write JavaScript using best coding practices.

e make use of patterns to structure your code.

e use and understand advanced techniques such as closures and recursion.

e obtain and utilize information about the environmentin which JavaScriptis running.

Before we begin programming, you need to learn a little about the programming environment you'll be using. This firstlesson of
the course will help you with that.

Lesson Objectives

When you complete this lesson, you will be able to:

e use OST's Sandbox and learning tools.
e read aboutwhatto expectin the Advanced JavaScript course.
e review JavaScriptbasics.

e use the Developer Tools in your browser to access the JavaScript console, which we'll be using extensively in this
course.

e useconsole.log to display messages in the console (for debugging).

e use good programming practices in your code.

Learning with O'Reilly School of Technology Courses

As with every O'Reilly School of Technology course, we'll take a user-active approach to learning. This means that you
(the user) will be active! You'll learn by doing, building live programs, testing them and experimenting with them—
hands-on!

To learn a new skill or technology, you have to experiment. The more you experiment, the more you learn. Our system
is designed to maximize experimentation and help you learn to learn a new skill.

We'll program as much as possible to be sure that the principles sink in and stay with you.

Each time we discuss a new concept, you'll putitinto code and see what YOU can do with it. On occasion we'll even
give you code thatdoesn'twork, so you can see common mistakes and how to recover from them. Making mistakes
is actually another good way to learn.

Above all, we want to help you to learn to learn. We give you the tools to take control of your own learning experience.

When you complete an OST course, you know the subject matter, and you know how to expand your knowledge, so
you can handle changes like software and operating system updates.

Here are some tips for using O'Reilly School of Technology courses effectively:

e Type the code. Resistthe temptation to cut and paste the example code we give you. Typing the code
actually gives you a feel for the programming task. Then play around with the examples to find out what else
you can make them do, and to check your understanding. It's highly unlikely you'll break anything by
experimentation. If you do break something, that's an indication to us that we need to improve our system!

e Take yourtime. Learning takes time. Rushing can have negative effects on your progress. Slow down and
let your brain absorb the new information thoroughly. Taking your time helps to maintain a relaxed, positive
approach. It also gives you the chance to try new things and learn more than you otherwise would if you
blew through all of the coursework too quickly.



e Experiment. Wander from the path often and explore the possibilities. We can't anticipate all of your
questions and ideas, so it's up to you to experiment and create on your own. Your instructor will help if you
go completely off the rails.

e Accept guidance, but don't depend on it. Try to solve problems on yourown. Going from
misunderstanding to understanding is the best way to acquire a new skill. Part of what you're learning is
problem solving. Of course, you can always contact your instructor for hints when you need them.

e Use all available resources! In real-life problem-solving, you aren't bound by false limitations; in OST
courses, you are free to use any resources at your disposal to solve problems you encounter: the Internet,
reference books, and online help are all fairgame.

e Have fun! Relax, keep practicing, and don't be afraid to make mistakes! Yourinstructor will keep you at it

until you've mastered the skill. We want you to get that satisfied, "I'm so cool! | did it!" feeling. And you'll have
some projects to show off when you're done.

Lesson Format

We'll try outlots of examples in each lesson. We'll have you write code, look at code, and edit existing code. The code
will be presented in boxes that will indicate what needs to be done to the code inside.

Whenever you see white boxes like the one below, you'll fype the contents into the editor window to try the example
yourself. The CODE TO TYPE bar on top of the white box contains directions for you to follow:

CODE TO TYPE:

White boxes like this contain code for you to try out (type into a file to run).

If you have already written some of the code, new code for you to add looks like this.

g
TITT

If we want you to remove existing code, the code to remove witi—took—tik

We may also include instructive comments that you don't need to type.

We may run programs and do some other activities in a terminal session in the operating system or other command-
line environment. These will be shown like this:

INTERACTIVE SESSION:

The plain black text that we present in these INTERACTIVE boxes is

provided by the system (not for you to type). The commands we want you to type look lik
e this.

Code and information presented in a gray OBSERVE box is for you to inspectand absorb. This information is often
color-coded, and followed by text explaining the code in detail:

OBSERVE:

Gray "Observe" boxes like this contain information (usually code specifics) for you to
observe.

The paragraph(s) that follow may provide addition details on information that was highlighted in the Observe box.

We'll also set especially pertinentinformation apartin "Note" boxes:



The CodeRunner Screen

This course is presented in CodeRunner, OST's self-contained environment. We'll discuss the details later, but here's
a quick overview of the various areas of the screen:

File Browser « Welcome | Courses | Messages | Overflow | System Administration 5 * Help  About  Sign Out *

e System Administration 5 « -

ecurit 3
=3IHome * ||Refresh Course AA y -
].php_fil H
& (J.php_niles 4 |=Lesson 1: Introduction to Linux System Seglriy  «| == —

4 [_] apache Objective 1

( \ Course Syllabus area:

Appearance controls:

Use these as needed to change lesson text size or contrast.

After completing this courseTyouwm

File Browser area: L%IFKI%Z %%ﬁ‘;sv;émg pcﬁgi‘twg‘i or»> ® demonstrate your ability to identify svstems security issues and solution:
Shows all of your files button. ® identify ways hacks
and folders. Mavigate ¢ find and fix weakne Lesson Content area:
like you would in When you finish a lesson, click the L.
Windows Explorer or Quiz and Objective links to do the Lesson Objectives Scroll up and down, and left to right, as needed. You might want to hide
the Finder on a Mac. homewark. In this lesson you will: the File Browser and Course Syllabus areas while working so you can
see more of this content.
Objective 1 ® read about the OR:
‘, Quiz 1 ® navigate in the Codel

la , Lesson 6: Local Assessment: Services ® |oginto and out of the Linux Learning Enviror

g ] e Divider bars: =
Grading Policy k] i 3
- — Click and drag to resize any panel.

Y IR [10p oy

Code Editor/ Terminal Emulation area:

This is where you type the code and commands we give you in the lessons.

Note the icons at the top for various functions. We'll describe these as we use them.

o Jpert
#l (] perlthomewaork

< n r

These videos explain how to use CodeRunner:

File Management Demo

Code Editor Demo

Coursework Demo

Welcome to Advanced JavaScript

You can get started with JavaScript quickly. All you need is a text editor and a browser, and you can begin
experimenting. When you learned the basics of JavaScript, you probably used it to modify web pages, and maybe to
modify the style of your pages in response to user input. You've probably written event listeners to handle events like
click events, and you've most likely used JavaScript to validate form data or add and remove elements from your page
as users interact with it.

In this course, we'll focus on the JavaScript language itself. Since the primary place we use JavaScriptis in the browser
to create interactive web pages, we'll still build web page applications, but the focus will be on language features, rather
than on web interfaces and the techniques we use to create web apps. The goal of this course is to take your
understanding of JavaScript to a deeper level, from scripter to programmer. You'll learn how to leverage the powerful
features of JavaScriptin your programming, as well as how to avoid common mistakes.

Accessing the Console

We'll make frequent use of the console to view the output we generate with console.log, as well as to
inspect code. So, before we do anything else, let's make sure you're comfortable with the developer console,
and you remember how to access and use itin each ofthe major browsers. Most end users never see the
console because it's for developers who are creating, testing, and debugging code, so if you haven't had
experience with the console before, don't worry, we'll get you up to speed quickly.

In this course, we'll show mostexamples using the Chrome browser console, because, as of this writing, it
has the mostfunctionality and is the easiestto use ofthe browser consoles. But you should become familiar
with multiple browser consoles for testing and debugging your code.


http://www.youtube.com/watch?v=45sATp529Mw
http://www.youtube.com/watch?v=SvbM6vPAG9k
http://www.youtube.com/watch?v=WmajY8bIXrA

Browsers are continualy updated with new versions thatinclude new versions of the console.
So, while the basic functionality of the console will likely remain the same, your version of the
console may look slightly different from what you see in this course. As you become familiar
with the different browser consoles, you'll be able to figure out how to use each one.

Z
o
-
[

Create a folder for your work. In the File Browser, right-click the Home folder and select New folder... (or
click the Home folder and press Ctrl+n), type the new folder name AdvJS, and press Enter.

Now create a new HTML file, then add this code:

CODE TO TYPE:

<!doctype html>
<html>
<head>
<title> Getting Started </title>
<meta charset="utf-8">
<script src="basics.]js"></script>
</head>
<body>
</body>
</html>

= Save this as basics.html in your /AdvJS folder.

Now create a new JavaScript file and add this code:

CODE TO TYPE:

var onSale = true,
inventorylLevel = 12,
discount = 3;
if (onSale && inventoryLevel > 10) {
console.log ("We have plenty left");
}

if (onSale || discount > 0) {
console.log("On sale!");
} else {

console.log ("Full price");

}

= Save this as basics.js in your /AdvJ S folder.

Now PrEVIEW 5% breview your basics.html file. You'll see an empty web page. To see the result of the

JavaScript, open up your browser's console. To getinstructions to access your console, click on the link to
whichever browser you're using:

e Chrome
e Safari
e Firefox

e Internet Explorer

To access the console in Chrome, use the View | Developer | JavaScript Console menu:



® Chrome File EditHistory Bookmarks Window

Help
Always Show Bookmarks Bar  {r32B
Reload This Page #R
Enter Presentation Mode {+3F
Enter Full Screen ~¥F
Actual Size 20
Zoom In B+
Zoom Qut i
Encoding >
View Source U
Developer Tools EI

JavaScript Console 32

Once you've enabled the console, you may need to reload the page to see the output. You'll see:

866

€« C f

Cetting Started

[Adv]S/basics.html

Elements

Resources

Sources

Timeline

Profiles

Audits | Console |

We have plenty
On sale!

Q @

There are many parts to the console. You'll become more familiar with some of them as we work through the

course.

Continue to the next step.

To access the console in Safari, use the Develop | Show Web Inspector menu (ifyou don'thave Develop

left

<top frame>¥ <page context>

| Errors Warnings

L &

enabled, you can enable it with Preferences | Advanced | Show Develop menu in menu bar):



® Safari File Edit View History Bookmarks Window Help

Open Page With »
User Agent >
Show Web Inspector

Show Error Console HC
Show Page Source HEU
Show Page Resources LA

Show Snippet Editor
Show Extension Builder

Start Profiling JavaScript Y {+#P
Start Timeline Recording 43T

Empty Caches 3E
Disable Caches

Disable Images

Disable Styles

Disable JavaScript

Disable Site-specific Hacks

Enable WebGL

You might need to reload the page to see this output:

800 Cetting Started

(«.»](+] (O] (8] 6

Getting Started

= =8| |E| < |[C] Current Log
We have plenty left

On sale!
> |

In order to see the outputin the the Safari console, make sure you have selected the Log tab in the console,
and you have the "Currentlog" at the fop of the list on the left panel selected. (You may only see one log, butif
you reload the page you could see previous logs. The currentlog is always at the top. This is where your
mostrecent outputfrom console.log will appear).



Continue to the next step.

To enable the Firefox console, use the Tools > Web Developer > Web Console menu and access the

console:

8 Firefox File Edit View History BookmarksWindow Help

Web Search H®K
Downloads #®)
Add-ons 4 3HA
Set Up Sync...

~ Web Developer >
% Web Developer Extension »
Page Info 1
Start Private Browsing 3P
Clear Recent History...
Poster P

# Firebug >

Web Console

Inspect AW |
Scratchpad

Page Source #.U
Error Console 3]
«f Dust-Me Selectors >

Get More Tools

You may need to reload the page to see the outputin the console. Note thatin Firefox, the default location for
the console is above the web page (unlike Chrome and Safari). You can click on the Position menu in the
console and select "bottom" or "window" to change the position of the console. Choosing "window" will pop

the console outinto a separate window.

Getting Started

Getting Started

Adv]5/basics.htm

¢ | (g~ Google

< (@Net v) (@Css v) (@S Y)

(LI Web Developer )

Position ~ Filter

GET http:/4
669 GET http:/s

Adw]S/basics.html [HTTP/1.1 384 Not Modified 178ms]

AdwlS/basics.js [HTTP/1.1 384 Not Modified Bims]

751 We have plenty left

753 On sale!

Continue to the next step.

To enable the Internet Explorer console, select Tools | F12 Developer Tools and then selectthe Console

tab.



HTML S5 | Console | Script  Profiler Network

[y =

We have plenty left

On sale!

Passing event - {"type":"EBDocumentComplete”,"data™:{}}

got matching apps: 4 before EBDocumentComplete

about to call executeScriptInFrame for Clarity Active for EBDocumentComplete with url: undefined
about to call executeScriptInFrame for CouponBuddy for EBDocumentComplete with url: undefined
about to call executeScriptInFrame for Find-a-Pro for EBDocumentComplete with url: undefined

about to call executeScriptInFrame for WindowShopper for EBDocumentComplete with url: undefined

>

You may need to reload the page to see the outputin the console.

Using the Console
Let's take a closerlook atthe Chrome console since that's the one we'll use in our examples throughout the

course. Other browser consoles have the same basic functionality. We'll let you know when you need to use
the Chrome console specifically to follow along.

JAdv]S/basics.html

Elements Resources Netwaork Sources Timeline Profiles Audits | Console

We have plenty left basics.js:5
On sale! basics.js:8

Q. | & <top frame>¥ <page context> Errors Warnings L#

There are several tabs across the top of the console, including the one we're on, Console. You'll use
Console mostoften when looking at the results of console.log(), and debugging your code by checking to
see if there are any JavaScript errors. In Safari, the equivalentis the Log tab shown in the screenshot; in
Firefox, it's the default view you see when you access Web Console from the menu, and in IE, it's a tab
labeled Console.

In Chrome, if you want to view the console into a separate window, click on the icon in the bottom left corner:



Click this icon to open the console in a separate window. ,
Audits | Console |

We hgve pl - - basics.js:5
on dhiel (C_)hcktms one to clear the console) basics. is-B

C Click to show all log messages. ) CCliCk for settings)

<top frame> ¥ <page context> Errors Warnings Logs Debud

Click the undock icon now. This will create a separate window for the console. You can click the icon in the
same location in that new window to dock it back to the original window. Give it a try.

You see two messages in the console that we created using console.log in our code:

OBSERVE:

var onSale = true,
inventorylevel = 12,
discount = 3;
if (onSale && inventoryLevel > 10) {
console.log("We have plenty left");
}

if (onSale || discount > 0) {
console.log("On sale!");
} else {

console.log("Full price") ;
}

The two console.log() messages shown in orange above create the outputin the console. The file name in

which the statements appear and the line numbers of the two statements are displayed in the console, next to
the output.

In Chrome, try clicking one of the line numbers, like basics.js:5. This will open the Sources tab, and
highlight that line in yellow temporarily:



i
e O Cetting Started

Lo {Adv]S/basics.html

Elements Resources Metwork | Sources | Timeline Profiles Audits Console

[ basics.js [ 1] gﬁ—

var onsale = true, » Watch Expressions
ieersarylagt - 12,

if (onSale && inventorylLevel = 18) { P Scope Variables

| console, logl"We have plenty left"); » Breakpoints

if (onSale || discount = @) { » DOM Breakpoints

N ELEEH?ULE. logl"0On sale!"); » XHR Breakpoints
console, logl"Full price"); ¢ Event Listener Breakpoints

11} » Workers

3
4
:.
]
7
B
9
1@

2 > @ {3} Lnes, Columnl

A

This can help you track down potential bugs. There are whole lot of options on the right side of the "Sources"
panel, including "Call Stack," "Scope variables," and "Breakpoints," all of which we'll use later as we getinto

some more advanced topics. Make sure that you have downloaded Chrome and have the latest version
installed on your computer for testing. As of this writing, the current version is 26. Your version may be
different, but that's okay because the basic functionality of the console is the same.

Note Go ahead and download Chrome and get familiar with the console tools, even if you typically
use another browser to create web pages.

We'll explore more of the console later, but for now we'll take a closer look at the code.

Good Programming Style Practices

Let's review some good practices for writing JavaScript programs:

Unfortunately, at this time, the other browsers don't come with the same tool installed by default.

OBSERVE:

var onSale = true,
inventorylLevel = 12,
discount = 3;
if (onSale && inventoryLevel > 10) {
console.log ("We have plenty left");
}

if (onSale || discount > 0) {
console.log("On sale!");
} else {

console.log ("Full price");

}




The variables we use are all declared at the top and given default values. In general, it's good
practice to declare your variables at the top of your file (or at the top of a function, if they are local variables),
and to give them values. A variable thatis not given a value is undefined. That's okay, but you need to be
aware of which variables have values and which don't as you write your program. It's usually better practice to
give your variables default values, rather than leave them undefined.

We've used the comma-separated style to declare the variables. It's also a good idea to put each variable
declaration on a separate line. Still, you can always declare them with separate statements instead, like this:

OBSERVE:

var onSale = true;
var inventorylevel = 12;
var discount = 3;

Either way is fine, so justdo whatever you prefer.

Next, you'll see that we're using semicolons after every statement. While JavaScript doesn't require this
currently, it's a good habit to develop. If you leave the semicolon off, JavaScript mightinterpret your
statements and expressions in a way you're not anticipating. If you're in the habit of leaving off your
semicolons, even occasionally, start putting them in after every statement. It will make debugging your code a
whole lot easier. We suspect that future versions of JavaScript may require semicolons to delimit statements
anyway, so you may as well getin the good habit now!

OBSERVE:

var onSale = true,
inventorylLevel = 12,
discount = 3;

if (onSale && inventoryLevel > 10) {
console.log ("We have plenty left");

}

if (onSale || discount > 0) {
console.log("On sale!");

} else {

console.log ("Full price");

}

Another habit you should getinto is using curly braces for every if (or while orfor, and such) block of
code, even if there's just one statementin the block. If you have only one statementin a block, technically you
don'tneed to use the { and } characters to delimit the block. However, this is a bad habit because it can cause
you to miss errors. Always use the curly braces!

Use plenty of white space. It's better to add more white space and format your code so it's easy to read, than
to scrimp on space to make your code shorter. Readability is vital when working on larger, more complex
programs, and it's always possible to "minify" your JavaScript later to take out the white space and make it
more efficientto download.

jscompress.com and YUl compressor.

Note There are plenty of "minification” programs out there that can minify your code for you such as

We'll cover other good programming practices and style suggestions throughout the course. We'll review
them atthe end of each lesson, so you'll get plenty of practice. There are also quite a few good style guides
online if you want to explore this topic further (not all of them agree on everything, of course). We like the
Airbnb JavaScript Style Guide (github).

Testing Code in the Console

Let's practice using the console to inspect values in our code. Update your file basics.js to define an object,
rect, and then display it using console.log. Here, we define rect as an object literal; that is, an object we write
as the value of the variable using the { and } characters to delimit the object. Remember, an objectis justa
collection of key value pairs. In this case rect has justtwo properties—width and height:


http://jscompress.com
http://refresh-sf.com/yui/
https://github.com/airbnb/javascript

CODE TO TYPE:

var onSale = true,
inventorylLevel = 12,
discount = 3;
if (onSale && inventoryLevel > 10) {
console.log ("We have plenty left");
}

if (onSale || discount > 0) {
console.log("On sale!"™);
} else {

console.log ("Full price");

}

var rect = {
width: 100,
height: 50

}i

console.log(rect);

= Save your changes (basics.js), and PreVIeW & preview your HTML file (basics.html), or simply reload
the page if you still have itopen in the browser. Make sure the browser console is open (you might have to
reload the page to see the output). You'll see this output:

OBSERVE:

We have plenty left
On sale!
Object { width: 100, height: 50 }

In Chrome, it will look like this:

00
e Cetting Started

A= JAdv|S/basics.html

Elements Resources MNetwork Sources Timeline Profiles Audits | Console

We hawve plenty left basics.js:5
On sale!

Object {width: 188, heil

basics.js:B
ight: basics.js:22

Q. & <topframe>¥ <page context> Errors Warr#

In Safari, it will look like this (make sure you click the little arrow next to the Object to see the object
properties):



Cetting Started

Getting Started

EH D EDO A== 8| |E|'1 = | [£] Current Log | 0
B We have plenty left basics.js:5
[=] Previous Log 4 — 3:18:16 PM PDT On sale! basics.js:8
¥ Object basics.js:22

[Z] Previous Log 3 — 3:18:02 PM PDT h
height: 5@

[=] Previous Log 2 — 11:22:49 AM PDT width: 108

[=] Previous Log 1 — 11:09:36 AM POT > : Dbject

In Firefox, it will look like this:

Getting Started
Lt
{ Adv]S/bas @ | (M~ Google Q |£| 1 *AMREIN

-

Disable =~ Q Cookies = # C55 = jil Forms + & Images = § Information ~ g Miscellaneous ~ 4 Outli

(WNet ~) (HCSS +) (115 ) (11Web Developer -) Position * Filter | Clear |
GET http://efreeman.userwo..com/AdvlS/basics.html [HTTP/1.1 384 Not Modified 92ms
GET http://efreeman.userworld. com/Adv]S/basics.js [HTTP/1.1 384 Mot Modified 85ms]
We have plenty left basics.js:5

On sale! basics.js:8
[({width:18@, height:508}) basics.js:22

(=T~ I~ T~ T <]

In IE, it will look like this:

HTML €55 | Conscle | Script  Profiler  Metwork

[y %

We have plenty left
on sale!

[object Object]



Notice that each is just a little different, but each console shows you the same basic information about the
object, including the two property name/value pairs.

Now, let's make a small change to the code:

CODE TO TYPE:

var onSale = true,
inventorylLevel = 12,
discount = 3;
if (onSale && inventoryLevel > 10) {
console.log ("We have plenty left");
}

if (onSale || discount > 0) {
console.log("On sale!"™);
} else {

console.log ("Full price");

}

var rect = {
width: 100,
height: 50

}i
console.log(rect);

console.log("My object rect is: " + rect);
= and PreVIEW S n the console, you see:
OBSERVE:

Object { width: 100, height: 50 }
My object rect is: [object Object]

Why do you think this is? Instead of seeing the two properties that the onject contains like we did before, we
see justa string representation of the object, "[object Object]". Thatisn't really helpful. In our code, we're
creating a string by concatenating the object, rect, with the string "My objectrectis: ", before outputting the
resultto the console. Previously, we passed the objectitselfto console.log(), so the console.log()
function displayed the object. Now we're passing a string to console.log(). When JavaScript converts the
objectto a string, we don't geta very useful display of the object.

Make one last change to your code:

CODE TO TYPE:

var onSale = true,
inventoryLevel = 12,
discount = 3;
if (onSale && inventoryLevel > 10) {
console.log ("We have plenty left");
}

if (onSale || discount > 0) {
console.log("On sale!™);
} else {

console.log ("Full price");

}

var rect = {
width: 100,
height: 50,
toString: function() {
return "Width: " + this.width + ", height: " + this.height;

}
}i
console.log(rect);
console.log ("My object rect is: " + rect);
console.log("My object rect is: " + rect.toString()):;




Don't forgetthe comma after the height property value! We added a method to this object as the third

property value, so we need a comma between the second and third properties. = and Previewss|

OBSERVE:

Object { width: 100, height: 50, toString: function }
My object rect is: Width: 100, height: 50
My object rect is: Width: 100, height: 50

The toString method is now shown as part of the rect objectin the outputfrom console.log(rect), which
you can see in the first line of output above. The line of code we justadded calls this method to display
the width and height properties of the object, which you can see in the third line of output above.
However, the second line that displayed "[object Object]" before, now displays the same as the third line.
That's because JavaScript automatically calls the toString() method when converting an object to a string. If
you implementthe toString() method yourselfin an object, then that's the method JavaScript will call. If you
don't, then JavaScript calls the toString() method in the Object object, which is the parent object of all
objects you create in JavaScript. The version oftoString() that's implemented in the Object objectdoesn't
do a very good job of creating a helpful string from the object, as you saw when "[object Object]" was
displayed.

Don'tworry about these details right now; we'll come back to all that later. For now just note the different ways
that the console displays output, depending on how you call console.log() and the kind of value you pass
this function.

Here's the outputin Chrome. In this screenshot, I've clicked on the line that shows the object properties (the
third line in the output), which opens up the objectto show more details, including lots of details about the
toString() method. Again, don'tworry about these details right now; we'll get to them later in the course, so
you'll know what they mean at the end.

B8]
e O Getting Started

= 'Adv]S fbasics.html

Elements Resources Metwork Sources Timeline Profiles Audits | Console |

We hawve plenty left basics.jis:5
On sale! basics.js:8B
YObject {width: 188, height: 58, toString: function} basics.js:28
height: 58
¥ toString: function () {
: null
:onull
HI ]

> : Object
> : function Empty() {1}
F =function scope=
width: 188
| : Object
My object rect is: Width: 188, height: 58 basics.js:21

My object rect is: Width: 188, height: 58 basics.js:22
> |

Q (& <topframe>¥ <page context> Errors Warr#

Safari (note that you can open up the object, and also the toString() method to see similar details in this
console):



Br"\r"\

(«i>][+] (O] (8] (&

Cetting Started

Getting Started

DSBAaa

[E |

= |B| |E 4 = [[]Current Log

| [0

L]

[=] Previous Log 6 — 5:39:20 PM PDT
[=] Previous Log 5 — 5:31:15 PM PDT
[=] Previous Log 4 — 3:18:16 PM PDT
[] Previous Log 3 — 3:18:02 PM PDT
[=] Previous Log 2 — 11:22:49 AM PDT
[=] Previous Log 1 — 11:09:36 AM PDT

We have plenty left
On sale!

¥ Object
height: 58

vtoString: function ()

null
null
H
* : Object
* : function
width: 1808
» : Object

My object rect is:
My object rect is:

Width:
Width:

basics.js:5
basics.{s:B
basics.js:28

{

58
58

108,
108,

basics.js:21
basics.js:22

height:
height:

Firefox:

Getting Started

Cetting Started
aticl

{Adv]5/bas

'-'l' Google

Q) () (B [# -

Disable ~ QL Cookies » # C55 - jl Forms ~ & Images = § Information ~ @ Miscellaneous = 4 Outli

(MNet ») (HCS5 +) ()5 =) (

Web Developer +)

Position ~

a
i)
T
L1
0 =
L]
@ -
i
T
L1

112,

[{width:18@, height:5@8})

My object rect is: [object Object]

GET http://efreeman.userw..om/Adv]S/basics.html

Filter | Clear |

basics.js:22
basics.js:23

[HTTP/1.1 384 Not Modified 295ms]

GET http://efreeman.userworld. con/Adv]S/basics.js [HTTP/1.1 288 OK 85ms]

We have plenty left

On sale!

[{width:18@, height:5@, toString:(function () {return "Width:

" + this.width + ", height: " + this.height;})})
My object rect is: Width: 18@, height: 5@

basics.js:5
basics.js:8
basics.js:2@
basics.js:21

2]

See the (2) next to the line of output? That means that the same line of outputis displayed twice.

IE:



HTML  ©55 | Conscle | Script  Profiler Network

[ =

We hawve plenty left

on sale!

Width: 1@@, height: 5@

My object rect is: Width: 18@, height: 5@
My object rect is: Width: 18@, height: 5@

Interacting Directly in the Console

So far, we've been using console.log() to display messages in the console, but you can interact directly
with the console to display the values of variables, create new statements, and even modify your web page.

In your browser's console, you'll see a prompt which indicates where you can type your own JavaScript. Click
in the console window next to the prompt, and type this:

INTERACTIVE SESSION:
> onSale
true
 Note The ">" character is the prompt; you shouldn't type this part.

We typed the name of the global variable onSale and pressed Enter. JavaScript responded with the value of
onSale.

Here's what the outputlooks like in the browsers Chrome, Safari, Firefox, and IE:

M
e O Getting Started

o { AdvS/basics.html

Elements Resources MNetwork Sources Timeline Profiles Audits | Console

We hawve plenty left

On sale!

B Object {width: 188, height: 58, toString: function}

My object rect is: Width: 188, height: 58

My object rect is: Width: 188, height: 58 basics.js:22
onSale

true

Q & <topframe>¥ <page context> Errars Warr#




gr"\r"\

(«i>)(+][O)(B] (6

Cetting Started

Getting Started

[E |

DSBAaa

= |B| |E 4 = [[]Current Log

| [0

Ll

[=] Previous Log 6 — 5:39:20 PM PDT
[=] Previous Log 5§ — 5:31:15 PM PDT
[=] Previous Log 4 — 3:18:16 PM PDT
[] Previous Log 3 — 3:18:02 PM PDT
[=] Previous Log 2 — 11:22:49 AM PDT
[=] Previous Log 1 — 11:09:36 AM PDT

On sale!
¥ Object

height
v toString:

»
*

width:

[ 2
My object
My object
> onSale
true

We have plenty left

basics.js:t
basics.js:E
basics.js:2¢
58
function {) {
null
null

]

Object
function
ip@
Object
Width:
Width:

58
58

108,
108,

height: basics.js5:21

basics.js:2:

rect is:

rect is: height:

Cetting Started

Getting Started |.| .|

| H 'Adv]S/bas

h_ AL

Q) (a4 (B (=]

'-"l' Google

® Disable ~ L Cockies » # €SS ~ il Forms ~ [ Images + § Information ~ @ Miscellaneous + # Outli

» (ENet ») (HCSS +) (H1)5 +) (I1Web Developer )

Paosition ~ Filter | Clear |

GET http://efreeman.userw.om/Adv]lS/basics.html [HTTP/1.1 384 HNot Modified 295ms
GET http://efreeman.userworld.com/Adv]S/basics.js [HTTP/1.1 28@ QK 85ms]

basics.js:5
basics.js:8
basics.js:28@

We have plenty left
On sale!

({width:18@, height:3@, toString:(function () {return "Width:
" + this.width + ", height: * + this.height;})}}

My object rect is: Width: 188, height: 5@

P
2R S 2 S

2]

basics.js:21

onSale
true




-

=RECa X

G - \-:__—‘;' http://3 D~2d \r:__—‘;' Getting Started T

5= @ Student Start Page -- O'Re... Suggested Sites - i~ B ~ = = v Page~ Safety~ Tools~ ﬂ-v

»

File Find Disable View Images Cache Tocls Validate | Browser Mode: IE10 Document Mode: Standards - [P X

HTML  C55 | Console | Script  Profiler Metwork

L =R
We have plenty left
on sale!
Width: 1@, height: se
My object rect is: wWidth: 18@, height: 5@
My object rect is: width: 1@e, height: se
»» onsale
true

>3 | b

»

e

We typed the name of a global variable, onSale that we defined in the code that's currently loaded into this
browser window. In response, the console provided the value of the variable, true. (Justthink of onSale like
an expression). Remember that you can only access global variables via the prompt, that is, variables defined
atthe global level in the currently loaded page. So far, all of the variables we've defined have been global.
When we begin creating functions with local variables, you won't be able to access those via the prompt, but
you can always display their values using console.log() in your code (we'll look at another way to inspect
the values oflocal variables using the Chrome console later).

Try entering the names of the other global variables we've defined in this small program to see the output
(inventoryLevel, discount, and rect). Try accessing the properties of the rect object (for example,
rect.width and rect.height). Enter some other expressions like 2 + 3, or "test." What happens? What
happens if you enter the name of a variable that doesn't exist, like testVar?

You can also define new variables at the prompt. This can coe in handy when you just want to try something
out without creating a whole new file. For example, try this:

INTERACTIVE SESSION:
> var a = [1, 2, 31;
undefined

In this statement, you define a new variable, a, to have the value of an array with three values. You see the
value undefined. That might be a bit confusing atfirst. It doesn't mean that the value of a is undefined, it just
means that the value returned to the console as a result of executing this statementis undefined (thatis, the
value of the statementitselfis undefined).

To verify that you've actually created a value for the array a, type a at the prompt:

INTERACTIVE SESSION:

> a
(1, 2, 3]

Now, let's write a loop to iterate over this array, rightin the console. To do this, you'll either type the entire for
loopononeline, oruse CtrI+Enter in Chrome and Safari, Shift+Enter in Firefox, and click the Multiline

e
N Fa . .
modeicon ( = )to create new lines in the console.



INTERACTIVE SESSION:

> for (var 1 = 0; 1 < a.length; i++) {
console.log("a[" + i + "]: " + alil);

If you forget to create a new line character and press Enter by mistake, you'll get an error and have to start
over. Once you've gotittyped in, press Enter to complete the code and you'll see this output:

OBSERVE:
al0] 1
afll: 2
al2]: 3

What happens if you reload the page? The value of a goes away. Variables that you add using the console
are valid only for the current session, and go away when you reload or close the tab or window.

Experiment! Create some new variables and write some JavaScript statements in the console. Get familiar
with using the console, especially in Chrome.

Commenting Your Code

Of course, we can'tend the lesson without mentioning comments. Comments are an important part of
creating readable programs, especially when your programs getlarge and complex. As you probably know,
there are two ways to comment code in JavaScript: /* ... */ and //. Let's give these both a try:

CODE TO TYPE:

/*
var onSale = true,
inventorylLevel = 12,
discount = 3;
if (onSale && inventoryLevel > 10) {
console.log ("We have plenty left");
}

if (onSale || discount > 0) {
console.log("On sale!"™);
} else {

console.log ("Full price");

}

var rect = {
width: 100,
height: 50,
toString: function() {
return "Width: " + this.width + ", height: " + this.height;

}
}i

console.log(rect);

console.log("My object rect is: " + rect);
console.log("My object rect is: " + rect.toString());
*/

//

// This function computes the area of a circle

//

// @param {number} The radius of the circle
// Qreturn {number} The area of the circle
//

function computeArea (radius) {

return radius * radius * Math.PI;

}

console.log ("Area is: " + computeArea(3));




Here, we used /* ... */to comment out large chunks of code. This is standard practice, as the /* and */
delimeters give you a quick and straightforward way to comment multiple lines, which can make testing and
debugging easier.

We also used // to create several lines of comments above the new computeArea() function that we added
to the code. We don't put all these comments in /* ... */ though, because if we decide later to comment out the
entire function, we can put the whole thing, including the heading comments, inside the /* and */ delimiters,
which makes commenting large chunks of code (including multiple functions) a lot easier. Of course, we can
use //to commentoutsingle lines of code temporarily for debugging or providing comments within a function.

Finally, notice the style we've used to comment this function.We've provided a brief description for the
function, as well as information about the parameter it expects, the radius of the circle, and the value it returns
(which is the area of the circle).

We won't always comment the examples extensively, but getin the habit of commenting your project code.
Your co-workers (and boss) will appreciate it, and so will you if (when) you need to go back and change your
code later.

Take some time to experimentin the console. Add more console.log() statements in the example (or create your own
example and experiment with that). Write statements directly in the console.

From here on, we'll show screen shots mostly from Chrome, but you can (and should) try the course examples in multiple
browsers. We'll let you know when you need to use a specific browser console for testing.

Now that you've gotthe basics of using the console down, we'll dive right into the nitty gritty of JavaScript types in the next

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.



http://creativecommons.org/licenses/by-sa/3.0/legalcode

Know Your Types

Lesson Objectives

When you complete this lesson, you will be able to:

e differentiate primitives and objects.

e categorize primitive types.

e distinguish null and undefined.

e constructobjects.

e use the console to experiment with JavaScript types, object properties, and various number representations.

JavaScript only has a few basic types, but they still require consideration. In this lesson, we'll review the basics of primitives and
objects, delve into a few details you may not have encountered before, and deepen your understanding of the fundamentals.

Know Your Types: Primitives and Objects

Every value in JavaScriptis either a primitive or an object. Primitives are simple types, like numbers and strings, while
objects are complex types because they are composed of multiple values, like this square object:

OBSERVE:

var square = {
width: 10,
height: 10

}i

This objectis composed of two primitive values: a width, with a value of 10, and a height, that also has the value of 10.
We'll look into primitives first; we'll come back to objects later.
Primitives

The three primitive types you'll work with most often are numbers, strings, and booleans. You can test these
types rightin the browser's console.

Open the console in a browser window and try typing in some primitive values. Some browsers don'tallow
you to open the console for an empty page. You can load the web page you created for basics.html in the
previous lesson, and then open the console, and trying testing some types, like this:

INTERACTIVE SESSION:

> 3

3

> "test"
"test"

> true
true

Let's try an expression:

INTERACTIVE SESSION:

>3 + 5
8

When you type an expression, the result of that expression is a value, which is displayed in the console.



When you type a statement, the result of that statementis (usually) undefined:

INTERACTIVE SESSION:

> var x = 3;
undefined

> x + 5

8

Here, we declared a new variable, x, in a statement (the first thing you typed into the console), and then used it
in the expression x + 5 (the second thing you typed into the console). Even though the statement sets the
value of x to 3, the result of the statementitselfis undefined. The result of the expression is just the value that
the expression computes. Get used to this behavior so you don't get confused when you see undefined in
the console!

Getting the Type of a Value with Typeof

JavaScript has a typeof operator that you can use to check the type of a value. There are a couple of
reasons thatyou don't necessarily wantto rely on this operator in your code. We'll get to those reasons a bit,
butfor now, we'll use typeof to check the type of our primitives, like this:

INTERACTIVE SESSION:

> typeof 3
"number"

> typeof x
"number"

> typeof "test"
"string"

> typeof true
"boolean"

The typeof operator mightlook a little strange at first; it's not like other operators you're used to that take two
values. typeof takes just one value, and it returns the type of that value as a string. So the type of the number
3 is returned as the string "number." Notice that we can use typeof on either values (like 3) or variables
containing values (like x).

You can use typeof in an expression, like this:

INTERACTIVE SESSION:

> if (typeof x == "number") {
alert ("x is a number!");

}

undefined

Rememberto use Ctri+Enter or Shift+Enter atthe end ofa line in the console to avoid getting an error.
Use Enter atthe end of the if statement (after the closing curly brace, }). Do you get the alert?

We compare the result of the expression typeof x with the string "number"”, and if they're equal, alerting a
message (yes, you can alert from the console!). The result of the if statementis undefined.

Null and Undefined

Now, let's take a look at these primitive types: null and undefined. You've seen undefined as the result of
statements you typed in the console. It pops up in other places as well, butlet's begin with null.

null is a way to say that a variable has "no value":



INTERACTIVE SESSION:

> var y = null;

undefined

> if (y == null) {

console.log("y is null!");

}

y is null!

< undefined

> typeof y

"object"

Here, we assigned the value null to the variable y. So y has a value—a value that means "no value." Weird.
We can compare that value to null, and since y has the value null, that comparision is true, and so we see
the message "y is nulll" in the console. (Yes, we can call console.log() from the console!) Notice that you
see "y is null" in the console, and then you see the result of the statement, which is undefined. In Chrome and
Safari, the console displays a little < character next to the undefined result of the statementso you don't mix
up the output to the console ("y is nulll") with the result of the statement (undefined). In Firefox, you'll see a
right-pointing arrow next to the undefined result of the statement.

Weirder still, when you check the typeof y, you get "object" as the result. What? That doesn't seem right.
Well, guess what—it's nofl This is an errorin the currentimplementation of JavaScript. The result should be
null, because the type of null is null.

This erroris one reason you don'twantto rely on typeof in your code. This mistake should be
' Note fixed in future implementations of JavaScript, but for now, just keep this in mind if you ever do '
' need to use typeof. (There's one otherissue with typeof we'll get to later). '

Okay, so whataboutundefined? Lots of people confuse null with undefined when they first start learning
JavaScript, so don't worry if it seems a bit murky. While null is a value that means "no value" (a mind bender
in itself), undefined means that a variable has no value at all, not even null:

INTERACTIVE SESSION:

> var z;
undefined
> z
undefined

You can create an undefined variable by declaring it and notinitializing it. Here, we declared the variable z, but
didn'tinitialize itto a value. When we check the value of z by typing its name in the console, we get the result
undefined.

Don'tconfuse the undefined you see as the result of the statement var z; with the undefined you see that
is the result of the expression, z.

So whatis the type of undefined? Can you guess? (This time, JavaScript has the correctimplementation.)

INTERACTIVE SESSION:

> typeof z
undefined

Yes, the type ofundefined is undefined!

Even though z is undefinedm (meaning thatit has no value), you can testto see if z is undefined, like this:



INTERACTIVE SESSION:

> if (z == undefined) {
console.log("z is undefined!");
}
z is undefined!
< undefined

Or you can test it like this:

INTERACTIVE SESSION:
> if (typeof z == "undefined") {
console.log("z is undefined!");

}
z 1s undefined!
< undefined

You'll getthe same result. Try it! Still, in general, we recommend thatyou don'tuse typeof unless you have a
good reason. You can test a variable to see itifis undefined directly by comparing the value of the variable (in
this case z, to the value undefined). You don'treally need to use typeof atall here.

Some Interesting Numbers

Before we leave the primitive types, let's talk a littte more about numbers. In your JavaScript programs, you've
probably used numbers to loop over arrays, represent prices, count things, and much more, butthere are a
few numbers you might not have run into yet.

First, let's go over how numbers are represented. In JavaScript there are two ways to represent numbers: as
integers and as floating point numbers. For example:

INTERACTIVE SESSION:

> var myInt = 3;

undefined

> var myFloat = 3.12583E03;
undefined

> myInt

3

> myFloat

3125.83

You can write a floating point number using scientific notation, 3.12583E03 (which means that the number
after the "E" is the number of times you multiply the number by 10). This is handy when you want to represent
very large or very small numbers.

Speaking of which, how do you know the largest or smallest numbers that you can represent? The JavaScript
Number object (which we'll talk more about later) has built-in properties for both of these:
Number.MAX_VALUE and Number.MIN_VALUE. Try them in your console:

INTERACTIVE SESSION:

> Number .MAX VALUE
1.7976931348623157e+308
> Number.MIN VALUE
5e-324

Wow. The MAX_VALUE is pretty large, and the MIN_VALUE is pretty small. You might think that means that



JavaScript can represent a lot of numbers, but the actual number of numbers JavaScript can representis
much smaller than you might think. Why? Because both the MAX_VALUE and MIN_VALUE numbers are
represented as floating point numbers and floating point numbers are not always precise. Notice that the
largest value has only 17 decimals, which means itis only precise in the first 17 places. Beyond that number
of places, it's all zeros, which means you couldn't accurately represent the number
1.7976931348623157000000001e+308, for instance. Floating point numbers are useful in some
circumstances when you're working with big numbers and you don't need precision.

When you do need precision, you'll want to use integers, and you'll need to know the largest (and smallest)
integer that JavaScript can represent. Let's take a look at the largest integer value in JavaScript, 2 raised to the
power of 53:

INTERACTIVE SESSION:

> Math.pow (2, 53)
9007199254740992

This is a pretty big number too, butit's a lot smaller than Number.MAX_VALUE. JavaScript can represent all
the integer values from zero up to this number precisely. That gives you a lot of numbers to play with and it's
unlikely that you'll ever need a larger number than this (this also applies to the smallestinteger number,
Math.pow(2, -53)).

Understanding how computers represent numbers could be a whole course in and of itself, so we won'tgo
any deeper into the topic now. If you're interested in exploring this topic further, check out the ECMAScript
specification (the specification on which JavaScriptis based), and the Wikipedia page on binary-coded
decimal numbers.

We're assuming you're using a modern browser on a modern computer, and Math.pow(2, 53) is
based on the ability of JavaScript to represent 64-bit numbers, which modern browsers on
modern computers can do. If, for some reason, you're on an older computer with an older
browser, then your maximum number might be based on 32-bit numbers instead.

2
o
-
®

To Infinity (But Not Beyond)

You mightremember from math class thatif you divide by 0, you getinfinity. When you begin programming,
this can cause problems because if you try to representinfinity in some programming languages, well, let's
justsay your computer won't be too happy.

JavaScript, however, is more than happy to represent infinity:

INTERACTIVE SESSION:

> var zero = 0;
undefined

> var crazy = 3/zero;
undefined

> crazy

Infinity

Instead of complaining when you divide by 0, JavaScript just returns the value Infinity. Whatis Infinity at
leastin JavaScript? (I suppose we may never know in the real world.)

INTERACTIVE SESSION:

> typeof crazy
"number"

In JavaScript, Infinity is a number (and so is -Infinity). Here's an experiment you can run if you like, but be
prepared to close your browser window, because this is an experiment that will never end:


http://ecma262-5.com/ELS5_HTML.htm#Section_8.5
http://en.wikipedia.org/wiki/Binary-coded_decimal

OBSERVE:

> var counter = 0;

undefined

> while (counter < crazy) {
counter++;
console.log (counter) ;

N

. forever

So although you can represent Infinity in your programs, that doesn't mean you can ever reach it. You can
testforitto prevent mistakes though:

INTERACTIVE SESSION:
> if (crazy == Infinity) { console.log("stop!"™); }
stop!

< undefined

Not a Number

One final interesting number you should know aboutis NaN, or "Nota Number". Wait, something that means
"Nota Number" is a number? Yes! Another oddity in the world of JavaScript. Give it a try:

INTERACTIVE SESSION:

> var invalid = parseInt("I'm not a number!");
undefined

> invalid

NaN

> typeof invalid

"number"

Here, we attempt to parse the string, "I'm nota number" into an integer. Clearly this will fail because there's
nothing in the string, "I'm nota number" that resembles an integer. So what is the resultin the variable
invalid? Well, it's NaN, when we check the type ofinvalid, we see thatitis indeed a "number", even though
the value is NaN.

You might think that you can testto see ifa resultis NaN like this:

INTERACTIVE SESSION:
> if (invalid == NaN) { console.log("invalid is not a number!"); }
undefined

ltdoesn'twork though. Go ahead. Try itnow. You won't see the console message "invalid is nota number!"

Instead, to testto see if a variable is nota number, you need to use the built-in function, isNaN():



INTERACTIVE SESSION:

> if (isNaN(invalid)) { console.log("invalid is not a number!"); }
invalid is not a number!
< undefined

Be careful with isNaN() though. What do you expectif you write:

INTERACTIVE SESSION:

> isNaN("3")
false

You might have expected to see the result true (meaning that the string "3" is nota number), but we get false
(meaning that the string "3" is a number). Why? Because isNaN() attempts to convertits argumentto a
number before it checks to see ifit's nota number. In the case of"3", JavaScript succeeds. Think of this code
as doing the equivalent of parselnt("3") and passing the result, 3, to isNaN(). This behavior is widely
considered to be a bug in JavaScript and may be fixed in a future version. In the meantime, just make sure

you know how isNaN() works so you can be prepared in case the value you pass to it can be converted to a
number.

Objects

We've spenta lotoftime in the world of primitives, so let's head on over to the world of objects for a while. At
this point, you've probably had quite a bit of experience with objects, butlet's do a quick review, to make sure
you're setup for some of the more advanced objectlessons to come.

Objects are collections of properties. Properties can be primitive values, other objects, or functions (which are
called methods when they are inside an object). Let's take a look atan example of an object. We'll go ahead
and create a simple HTML file to hold our object (it's easier than typing at the promptin the console):

CODE TO TYPE:

<!doctype html>

<html>

<head>
<title> Objects </title>
<meta charset="utf-8">

<script>
var person = {
name: "James T. Kirk",

birth: 2233,
isEgotistical: true,
ship: {
name: "USS Enterprise",
number: "NCC-1701",
commissioned: 2245
}V
getInfo: function() {
return this.name + " commands the " + this.ship.name;
}
}i
</script>
</head>
<body>
</body>
</html>

= Save this as objects.html in your /AdvJS folder, and then PTEVIEW 5% vou won't see anything in the

page, so open up the console (and reload the page, justto be sure). Since we defined person as a global
variable, we can use itin the console:



INTERACTIVE SESSION:

> person.getInfo ()
"James T. Kirk commands the USS Enterprise"

The person object contains properties with primitive values and values that are other objects. We say that the
person.ship objectis nested inside the person object. You can nest objects within objects within objects
and so on, as deep as you'd like to go (although there is a limitto how deep you can go, you're unlikely to hit
itin a normal program), but keep in mind that the more nested objects you have, the more inefficient your
objectbecomes. Also note thatthe most deeply nested object must have properties that are either primitive
values or methods (in order for the nesting to stop).

Adding and Deleting Properties

One cool thing about JavaScript objects is that they are dynamic, thatis, you can change the properties atany
time by changing their values, or even by adding or deleting properties:

INTERACTIVE SESSION:

> person.title

undefined

> person.title = "Captain";
"Captain"

> person.title

"Captain"

> person

Object {name: "James T. Kirk", birth: 2233, isEgotistical: true, ship: Object, g
etInfo: function}

birth: 2233

getInfo: function () {
isEgotistical: true

name: "James T. Kirk"

ship: Object

title: "Captain"

__proto_ : Object

Here, we gotthe value of a property that doesn'texistin person, person.title. The resultis undefined,
which we'd expect. Next, we set the property title in person by defining it, and giving it the value "Captain."
Now, we can get the value of the property using person.titte. When we display the value of person in the
console (just by typing the name of the object, and pressing Enter), we see thattitle has been added to
the object, as ifwe'd had it there all along. (Note that we inspected the details of the person object by
clicking on the arrow next to the objectin Chrome, which exposes all of the details in the console.)

Now, suppose you wantto remove the title property:

INTERACTIVE SESSION:

> delete person.title
true

> person.title
undefined

> person

Object {name: "James T. Kirk", birth: 2233, isEgotistical: true, ship: Object, g
etInfo: function}
birth: 2233

getInfo: function () {
isEgotistical: true
name: "James T. Kirk"
ship: Object
__proto_ : Object




delete removes the entire property, not just the value. The property no longer exists in the object, so when
we try to getits value, we get undefined again. When we inspect the object, we can see that the title property
is gone.

Here's a screenshot of this console interaction in Chrome after loading objects.html:

Elerments Resources Network Sources Timeline Profiles Audits | Console |

» person. title
undefined
» person.title = "Captain";
"Captain"
» person.title
"Captain"
» person
Y 0bject {name: "James T. Kirk", birth: 2233, isEgotistical: true, ship: Object, getlInfo: function.}
birth: 2233
» getInfo: function () {
isEgotistical: true
name: "James T. Kirk"
F ship: Object
title: "Captain"

»__proto__: Object

» delete person.title

true
» person. title

undefined
» person

¥ Object {name: “"James T. Kirk", birth: 2233, isfgotistical: true, ship: Object, getInfo: function}

birth: 2233

» getInfo: function () {
isEgotistical: true
name: "James T. Kirk"

B ship: Object

» __proto__: Object

|E|‘ Q <top frame> ¥ <page context> LR All Errors Warnings Logs Debug ﬁ

What's the Type of an Object?

Are you wondering what the type of an objectis? Go ahead and testusing typeof in the console:

INTERACTIVE SESSION:

> typeof person
"object"

In this case, JavaScript returns the string "object" when we ask for the type of the object person. That's good.

Enumerating Object Properties

JavaScript has the capability to examine the properties of an objectin the program itself. This is known as
type introspection. Let's take a look at an example of that. Mo dify objects.html as shown.



CODE TO TYPE:

<!doctype html>

<html>

<head>
<title> Objects </title>
<meta charset="utf-8">

<script>
var person = {
name: "James T. Kirk",

birth: 2233,

isEgotistical: true,

ship: {
name: "USS Enterprise",
number: "NCC-1701",
commissioned: 2245

}I

getInfo: function() {
return this.name + " commands the " + this.ship.name;

}

bi

for (var prop in person) {
console.log(person[propl) ;
}
</script>

</head>

<body>

</body>

</html>

= and Preview % vou see each property of the object displayed in the console—here's what it looks like

in Chrome:

Elements Resources Netwaork Sources Timeline Profiles Audits | Console |

James T. Kirk cbjects.html:22
2233 objects.html:22
true objects.html:22
Object {name: "USS Enterprise", number: "NCC-1781", commissioned: 2245} objects.html:22
function () {
return this.name + " commands the " + this.ship.name;
} obiects.html:22
>
|E|‘ Q | & <top frame>¥ | <page context:> LR All | Errors Warnings Logs Debug ﬁ

Let's take a closer look athow we did this:

OBSERVE:

for (var prop in person) {
console. log (person[prop]) ;

}

We used aforloop to loop through all the properties in the object, butinstead of the traditional for loop you
might be used to, we used a for/in loop (you may have used this in a previous course when accessing keys
and values in Local Storage). In the for/in statement we declare a variable: prop. Each time through the loop,

prop gets the property name of the next property in the object person. When we go through an object to
access each of its properties, we call this enumerating an object's properties.

Then, inside the loop, we display the value of the object's property in the console. We use the bracket
notation to access the object's property. You can try this atthe console yourselfto see how itworks:



INTERACTIVE SESSION:

> person|["name"]
"James T. Kirk"

To access an object's property value with bracket notation, you put the name of the property in quotation
marks within brackets, next to the name of the object.

This notation is handy because it allows you to access the property of an object without knowing the name of
the property in advance (look back atthe for/in loop and see that we're using a variable, prop, as the
property name within the loop).

When would you use this? Well, you might want to copy a property from one object to another, but only if the
property does exist. You could use bracket notation to check to see if the property exists first. Or perhaps
you are loading JSON data from a file using XHR (Ajax), and creating or modifying objects from the data. We'll
see a couple of examples later in the course where the capability to enumerate an object's properties will
come in handy.

Primitives That Act like Objects

Earlier we said that you can split JavaScript values into two groups: primitives and objects. This suggests that
they are completely separate, and they are...for the most part. However, you should know thatsome
primitives—specifically, numbers, strings and booleans— can act like objects sometimes.

Try this:

INTERACTIVE SESSION:

> var s = "I'm a string";
undefined

> s

"I'm a string"

> s.length

12

> s.substring (0, 3);

HI |mll

In the firstline, we declare and initialize the variable s to be a string, "I'm a string." As you know, a string is a
primitive. Yet we ask for the length of the string, s.length, and the first three letters of the string,
s.substring(0, 3), treating the string s as if it were an object. After all, only objects have properties, like
length, and methods, like substring(), right? So, what's going on?

We have a primitive that's acting like an object! When you try to access properties and methods thatacton a
primitive, JavaScript converts the primitive to an object, uses a property or calls a method, and then converts it
back to a primitive, all behind the scenes. In this example, the string s is changed to a String object
temporarily so we can use the length property, and then changed back to a primitive. Then, it's converted to a
String object so we can call the substring() method, and then changed back to a primitive again.

The same thing can happen with numbers and booleans:



INTERACTIVE SESSION:
> var num = 32;
undefined
> num
32
> num.toString ()
" 32 ”

> var b = true;
undefined

> b.toString ()
lltrue "

In practice, there are not many times you'll need your numbers and booleans to act like objects, except when

you convert them to strings, which happens whenever you use console.log() like this:

INTERACTIVE SESSION:

> console.log("My num is " + num);
My num is 32
< undefined

Here, num is changed temporarily to a Number object, its toString() method is called, the resultis

concatenated with "My num is," and the resultis displayed in the console (and num is converted back to a

primitive). All of that happens behind the scenes so you don't have to worry about it.

Similar to built-in object types like Array and Date and Math, JavaScript has the built-in object types

Number, String and Boolean. You'll rarely use these though, and you should never do this when you need

justa simple primitive value, like 3:

INTERACTIVE SESSION:

> var num = new Number (3);
undefined

> num

Number {}

Why? Because JavaScript will always convert a primitive, like 3, to an object when it needs to, without you
having to worry aboutit. So, primitives are converted to objects behind the scenes sometimes, butyou'll

probably never need to use those objects directly yourself.

JavaScript is Dynamically Typed

If you've had exposure to other languages, you might have run across languages in which you mustdeclare

the type of a variable when you create a new variable, like this:

OBSERVE:

int x = 3;
String myString = "test";

In these languages, once you declare a variable to be a certain type, that variable must always be that type. If

you try to put a value of a different type into the variable, you'll get an error. For instance, you can'tdo
something like this:

OBSERVE:

X = myString;




Here, we tried to set the variable x to a string, but we can't because x is declared to be an int (an integer
number). This line of code will cause an error.

These languages are known as "statically typed" languages. "Static" because the types of variables can't
change.

Contrast this with JavaScript, which is a dynamically typed language. In JavaScript, you declare variables
with no type, and you can change the types of the values in those variables atany time you want:

INTERACTIVE SESSION:

> var x = 3;

undefined

> var myString = "test";
undefined

> x = myString;

"test"

> X

"test"

So x starts outas a number, and ends up as a string. JavaScript has no problem with this.

You can change the type of a variable, but that doesn't mean you should. Why? Well, if you change the type of
a variable in the middle of your program, you might forget you did and expect the variable to contain one kind
of value, when in fact it might contain a different kind of value, which could cause bugs in your code.

Sometimes you'll take advantage of the fact that variables can contain any type; but mostofthe time, it's best
to stick with one type for a given variable throughout your program.

In this lesson, you learned about primitives and objects that you might not have encountered before when programming in
JavaScript. Understanding the types in JavaScript more deeply is important as you progress to more advanced programming.
Forinstance, you might need to know whether to expect null or undefined if you're checking to see ifa method succeeds or fails
in creating a new object, or when to check to see if the resultofa method is NaN if the user submits the wrong kind ofdata in a
form.

Practice your new skills with the quizzes and projects before moving on to the nextlesson, where we'll continue to explore
primitives and objects and how they behave when you start comparing them.

Copyright © 1998-2014 O'Reijlly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.



http://creativecommons.org/licenses/by-sa/3.0/legalcode

Truthy, Falsey, and Equality

Lesson Objectives

When you complete this lesson, you will be able to:

e testfornull and undefined.

e testvalues fortruthiness.

e compare values using the strict equality operator.

e examine and compare the property names and the property values of objects.

e design appropriate conditional tests when using equality operators and typecasting.
e explore equality of objects.

You might think that testing for the equality of two values is simple and straightforward. Well actually, sometimes itis, and
sometimes it's not. In JavaScript, when we compare two values, we get a result: true or false. However, determining the result of
a comparison is notalways as straightforward as you might think, because along with true and false, we also have fruthy and
falsey values. In addition, testing equality for primitives is different from testing equality for objects. In this lesson, you'll learn
what's really happening behind the scenes when you compare values.

For the examples in this lesson, you're welcome to create an HTML file with a <script> or use the console. Either is fine. We'll
show examples of both.

Truthy, Falsey, and Equality

In JavaScript, we compare values all the time. For instance, you might do this:

OBSERVE:
var weather = "sunny";
if (weather == "sunny") {
console.log("It's sunny today!");
} else {
console.log ("It must be rainy.");
}
We compare a string value with another string value using a conditional expression, weather == "sunny", to see if

they are equal, and the result of that conditional expression is either true orfalse (in this case, it's true). In an if
statement, we use conditional expressions to determine whether to execute a block of code. If the expression in the
parentheses results in true, the first block of code is executed; ifit's not, the else block is executed (if there is one—if
there isn't, execution just continues with the next line of code after the if statement).

We can do the same thing with values that are directly true or false like this:

OBSERVE:

var isItSunny = true;
if (isItSunny) {

console.log ("It's sunny today!");
} else {

console.log ("It must be rainy.");

}

Notice that here, we don't have to compare isltSunny to true, because we know thatisltSunny is a boolean value.
This means we can shorten the expression to isltSunny.

In many cases, we're working with expressions that are true or false, but sometimes we work with values that are truthy
or falsey. What does this mean? It means that some values aren't directly true or false, but are interpreted by JavaScript
to mean true or false in certain situations, like conditional expressions. Here's an example (before you try these in the
console yourself, see if you can guess what you'll see as the result of each statement):



OBSERVE:

if (1 == 1) { console.log("1l really does equal 1"); }
if (1) { console.log("l is true"); }

Go ahead and try these statements in the console (remember that you might have to load an HTML page to access the

console):
INTERACTIVE SESSION:
> if (1 == 1) { console.log("l really does equal 1"); }
1 really does equal 1
< undefined
> if (1) { console.log ("1l is true"); }
1 is true
< undefined

The first statement is straightforward; we compare the value 1 with the value 1, so of course we expect them to be
equal, and expect to see the console log message, "1really does equal 1."

So what about the second statement? There, we test the value 1to see ifit's true or false, but 1 isn't either true or false,

it's 1, right? Yet the result of this statementis that we do see the console log message "1is true," which means that
JavaScript must think that 1is true. Hmmm. That's perplexing.

What about this next example; what do you think you'll get?

OBSERVE:

if (0) { console.log ("0 is true!"); }

Try it. This time we don't see the console log message, which means JavaScript must think that 0 is false:

INTERACTIVE SESSION:

> if (0) { console.log ("0 is true!™); }
undefined

Try one more experiment:

INTERACTIVE SESSION:

> if (-5) { console.log("-5 is true!"); }
-5 is true!
< undefined

That'snteresting. JavaScript thinks that -5 is true!

So itturns out that numbers other than 0 are fruthy, and 0 is falsey. We use those terms to indicate that even though -5

isn'ttrue, itresults in true in a conditional expression. Same with 0; even though 0 isn'tfalse, itresults in false in a
conditional expression.

Experiment a biton your own. For instance, is NaN truthy or falsey? What about Infinity?

Values That are Truthy or Falsey

We need to find out which other values are truthy and falsey in JavaScript. Let's do some testing in the
console to see how JavaScript treats values in truthy and falsey situations. We'll begin with undefined.
Before you look at the example below, do you think undefined is truthy or falsey?



INTERACTIVE SESSION:

> var myValue;

undefined

> if (myValue) { console.log("undefined is truthy!"); }
undefined

> if (!myValue) { console.log("undefined is falsey!"); }
undefined is falsey!

< undefined

Remember that! means NOT, so if myValue is false, then ImyValue is true. So, undefined is falsey,
because in the second expression, myValue resolves to false, and then we say "NOT false" with ImyValue,
which results in true, so we execute the if statement block to display the message "undefined is falsey!". Is
that what you expected; thatis, thatundefined is falsey? Here's how this session looks in the Chrome

console:

» var myValue;
undefined

» if (myValue) { console.log("undefined is truthy!"}); 1}
undefined

» if (!myValue) { console.log({"undefined is falsey!"};
undefined is falsey!
undefined

> |

What about null? Can you guess?

}

INTERACTIVE SESSION:

> myValue = null;

null
> if (myValue) { console.log("null is truthy!"); }
undefined

> if (!myValue) { console.log("null is falsey!"); }
null is falsey!
< undefined

So, null is also falsey. It kind of makes sense thatifundefined is falsey, then null would also be falsey,

right?

Okay, we've looked at numbers, undefined and null. What about strings?:

INTERACTIVE SESSION:
> var myString = "a string";
undefined

> if (myString) { console.log("myString is truthy!"); }
myString is truthy!

< undefined

> if (!myString) { console.log("myString is falsey!"); }
undefined

In this case, we see the string "myString is true" which means that myString is truthy.
myString to the empty string, "". Now do you think myString will be truthy or falsey?

How about if we set




INTERACTIVE SESSION:

> myString = "";

> if (myString) { console.log("myString is truthy!"); }
undefined

> if (!myString) { console.log("myString is falsey!"); }
myString is falsey!

< undefined

So a string with characters is truthy, but an empty string is falsey. Experiment a bit. Whatif myString is a
string with one space in it, like this: " "?

Shortcuts using truthy and falsey results

Knowing thatundefined, null, and "" are all falsey values, can you think of a good way to shorten the code
below?

CODE TO TYPE:

<!doctype html>

<html>

<head>
<title> Truthy, Falsey, Equality </title>
<meta charset="utf-8">

<script>
var myString = prompt ("Enter a string");;
if (myString == null || myString == undefined || myString == "") {
console.log("Please enter a non-empty string!");
} else {
console.log("Thanks for entering the string '" + myString + "'");
}
</script>
</head>
<body>
</body>
</html>

= Save this in your JAdvJS folder as stringTest.html, and PrEVIEW % Open the console (you might
need to reload the page to see the outputin the console). Enter a string and note the message you see. Try
entering different values at the prompt, like null (just click OK), "", and "test", for instance.

Now that you know about truthy and falsey values, you can shorten this code:



CODE TO TYPE:
<!doctype html>
<html>
<head>
<title> Truthy, Falsey, Equality </title>
<meta charset="utf-8">
<script>
var myString = prompt ("Enter a string");;
if (mySEriag———aai—t+—myStriag——uhndefired—+—mySEring———2"" ImyStrin
g) |
console.log("Please enter a non-empty string!");
} else {
console.log("Thanks for entering the string '" + myString + "'");
}
</script>
</head>
<body>
</body>
</html>

= and PrEVIEW S a9ain (or reload if you still have the page open). You getthe same behavior as before,
but with a much shorter conditional expression. Again, try entering a few different values to make sure this
works as you expect. Try replacing the prompt for myString to undefined, null, the empty string, or
something else.

In cases where you need to testto make sure that a variable has a truthy value, but you don't care what that
value is exactly, you can use this type of shortcut to save yourself some typing.

Be careful though. In cases where you need to test for a specific value, you also need to understand implied
typecasting. We'll talk about next.

Implied Typecasting

Does 88 equal "887" That's an interesting question. Let's see:

INTERACTIVE SESSION:

> var myNum = 88;

undefined

> var myString = "88";
undefined

> if (myNum == myString) {

console.log ("My number is equal to my string!");
}
My number is equal to my string!
< undefined

JavaScript converts the string "88" into a number before doing the comparison between myNum and
myString, so the comparison actually happens between 88 and 88. Of course those values are equal, so the
resultis true, and we see the console log message, "My number is equal to my string!"

This process of converting a string to number before doing a comparison or another operation is called
"implied typecasting" (also known as type coercion or type conversion). JavaScript does implied typecasting
as needed. For instance, whenever you do something like this:



INTERACTIVE SESSION:

> var age = 29;

undefined

> var output = "My age is " + age;
undefined

> output

"My age is 29"

Here you are using JavaScript's ability to convert the variable age from a number to a string automatically, so
it can be concatenated with the string "My age is."

When converting strings and numbers, be careful because the result may notalways be what you expect. You
know that sometimes JavaScript converts a string to a number, like when we compare 88 and "88," and you
know that sometimes JavaScript converts a number to a string, like when you want to concatenate a number
to a string. So what do you think the result will be when we try to add a string that contains a number to a
number?

INTERACTIVE SESSION:
> var x = 4;
undefined

> x = x + "4";

" 4 4 "

> X

" 4 4 "

You might've expected to get 8.

Let's try another experiment:

INTERACTIVE SESSION:
> var myString = "test";
undefined

> if (myString) {
console.log("'test' is truthy");
} else {
console.log("'test' is falsey");
}
'test' is truthy
< undefined

> if (myString == true) {
console.log("'test' is true");
} else {

console.log("'test' is false");
}
'test' is false
< undefined

Notice thatin the firstif statement, if (myString) ..., we rely on the truthy-ness or falsey-ness of myString
to resultin true or false to determine the flow of execution. However, in the second if statement, if
(myString == true) ..., we compare the value of myString with the boolean true, explicitly. JavaScript
doesn'tdo implied typecasting and conversion of myString to true or false here.

As you can probably tell, it's a bit tricky to know for sure in every case exactly how JavaScript will (or won't)
typecastand convert a value for comparison. One way that you can be more confident that you'll get the result
you expectis to use the strict equality operator ===, in place ofthe equality operator, ==.

For more information about how JavaScript performs type conversions, see the ECMAScript specification.



http://www.ecma-international.org/ecma-262/5.1/#sec-9

Testing Equality

JavaScript has two operators for testing equality, == and ===. You've probably been using == in your
JavaScript programming, but consider using === instead (atleast sometimes). Let's take a closer look at the
difference between these two operators, and why you might use one over the other.

We'll begin by looking at an example of these two operators in action:

INTERACTIVE SESSION:
> null == undefined
true
> null === undefined
false
The equality operator, ==, attempts to do implied typecasting before it compares two values. So, in the first

expression above, JavaScript sees that you're trying to compare values of two different types, and so, tries to
convertone type to the otherin order to do the comparison. In this case, JavaScript could either convert
undefined to null, or null to undefined (JavaScript can do it either way), and then the two values are
equal.

However, the strict equality operator, ===, does notdo implied typecasting. Instead, it compares the two
values as they are. If the types of the two operands are different, then the resultis false immediately. Let's see
what happens when we use strict equality on our previous comparison of 88 with "88":

INTERACTIVE SESSION:

> var myNum = 88;

undefined
> var myString = "88";
undefined
> if (myNum === myString) {
console.log ("My number is equal to my string!");
} else {

console.log ("A number shouldn't really be equal to a string!");
}
A number shouldn't really be equal to a string!
< undefined

Let's try strict equality on a falsey value, like O:

INTERACTIVE SESSION:

> var zero = 0;
undefined

> if (zero == false) {

console.log("zero is a falsey value!");
}
zero is a falsey value!
< undefined

> if (zero === false) {
console.log("zero is a falsey wvalue!");
} else {

console.log("Now we don't convert zero to false");
}
Now we don't convert zero to false
< undefined

So, strict equality prevents conversion of a falsey value, like 0, to false.

Just like the == equality operator has a negative version, != (meaning not equal to), the strict equality operator



also has a negative version, I==. The only difference between != and == is that != attempts to typecastits

operands to the same type, while == does not.
Do some experimenting with the four operators: ==, !=, === and !==. You might be surprised by what you
find.

Some programmers always use strict equality (and strictinequality) rather than equality (and inequality).
However, sometimes you might want to take advantage of JavaScript's ability to do typecasting. If you do, be
cautious and make sure you know exactly how that typecasting is going to work on the types of values you
expect.

You can get all the gory details of the algorithms used by the equality operator and the strict equality operator

(also known as the identity operator) in the ECMAScript specification.

Objects and Truthy-ness

So far, we've been looking at the truthy-ness and falsey-ness of primitive values like numbers, strings, null
and undefined. What about objects?

INTERACTIVE SESSION:

> var o = { name: "object" };
undefined

> 0

Object {name: "object"}
> if (o) {
console.log("This object is truthy!");
}
This object is truthy!
< undefined

So itlooks like objects are truthy. What about empty objects? (Remember that empty strings are falsey, so
you might expect that empty objects are also falsey.)

INTERACTIVE SESSION:

> var p = {};

undefined

> if (p) |
console.log("This object is truthy!");

} else {
console.log ("This object is falsey!");

}
This object is truthy!
< undefined

Interesting. Even a completely empty object, like p, is still truthy. But...

INTERACTIVE SESSION:
> p == true

false

> p == false

false

Even though p might be truthy, it's not equal to true (or false) using the equality operator, so no type
conversion is happening here.

Objects and Equality

Let's do a few more tests in the console and compare our empty object, p, to some other values:


http://www.ecma-international.org/ecma-262/5.1/#sec-11.9

INTERACTIVE SESSION:
> var p = {};
undefined
> p ==
false
> p == null
false
> p == undefined
false
> p == "{}1"
false
> p == {}
false
In this example, we use the equality operator, ==, because we want JavaScript to try to typecast the values for

comparison. As you can see, all of the results are false, which means that even if JavaScriptis able to
typecast, the comparison is still false.

Most of these results are probably expected, but that last one sure isn'tl We know that p is an empty object, {
},so whyisn't p equal to another empty object? Aren't they the same thing?

Go ahead and create a file with two objects so we can experiment:

CODE TO TYPE:

<!doctype html>
<html>
<head>
<title> Comparing objects </title>
<meta charset="utf-8">
<script>
var bookl = {
title: "Harry Potter",
author: "JK Rowling",
published: 1999,
hasMovie: true
}i
var book2 = {
title: "Harry Potter",
author: "JK Rowling",
published: 1999,
hasMovie: true

}i

if (bookl == book2) {
console.log("The two books are the same");
} else {
console.log("The two books are different");
}
</script>
</head>
<body>
</body>
</html>

Here, we create two book objects using object literals, and then testto see if the books are equal.

= Save this in your JAdvJS folder as objectsTest.html, and PTEVIEW 5 |n the console, you see the
message, "The two books are different.”

The two books, book1 and book2, are exactly the same: they have the same properties. All the property
names are the same, the property values are the same, and the number of properties is the same. So why
aren'tthey equal? (Note that we're using the equality operator here to test equality; we know the types of the



two objects are the same, so we don'thave to worry about any typecasting happening).

The two objects are not equal because of an important difference in how primitive values are stored and how
objects are stored in the computer's memory. When you create a primitive value, let's say:

OBSERVE:

var x 3;

the computer allocates a bitof memory, gives it the name "x", and saves the value 3 in that bitof memory:

___—TThe value of x is stoved divectly
in He mewmory allocated for .

Now, compare thatto what happens when you create an object, let's say book1 from the example above:

OBSERVE:

var bookl
title:
author:

= {

"Harry Potter",
"JK Rowling",

published:
hasMovie:

1999,
true

i

In this case, the computer names and allocates some memory for each of the properties in the object, and
then allocates a separate bitof memory for the variable name, and in that memory stores a value that points
to the place in memory where the objectis actually stored. This is called an object reference. So the

variable book1 doesn't contain the object itself; it actually contains a reference to the object. Like this:
book1

495823 &~

The value of bookl is a
Value representing the

title:

"Harry Potter"

author:

"JK Rowling"

published: 1999

location it memory wieve
the object data is stored

hasMovie: true

In this case, the object value (thatis, all the properties in the object, plus a few other things about the object) is
stored atmemory location 495823 (I just made that up for this example, but you get the idea), and the variable
book1 contains thatlocation (in the same way that x contains 3).

Now let's see what happens when we create the second book object, book2:

OBSERVE:

title:
author:

var book2 = {

"Harry Potter",
"JK Rowling",

1999,
true

published:
hasMovie:

}i

Even though the properties are exactly the same, a completely separate book objectis created and stored in
a completely different part of memory:



book2 599325 * 1~
title: "Harry Potter”

author: "JK Rowling"

published: 1999

hasMovie: true

The variable bo o k2 contains the memory location of this second object, and the memory location is different
from the memory location for boo k1.

So when we compare book1 and book2:

OBSERVE:

if (bookl == book2) {

console.log ("The two books are the same");
} else {

console.log ("The two books are different");

}

the values that are compared are the memory locations of the two objects. They are not equal, so we see the
message "The two books are different.”

bookl 495823
title: "Harry Potter"

author: "JK Rowling"

Whew vou cowmpare

book! and book?, again
Javasceript looks at
REENEESSL i the value in memory
book| and compav-es it o
Hae value in memory

book2 | ss932s book?. W this case, they
title: "Har Potter" ol AE‘P‘P@r’eb‘Vi’, loéCﬁUSé
- i the data for each ohject

SLESES P Rowl ings is stoved i a different
published: 1999 place in mewmory!

published: 1999

hasMovie: true

Compare this to what happens when we compare primitive values:

INTERACTIVE SESSION:

> var x = 3;

undefined

> var y = 3;

undefined

> if (x == y) { console.log("x and y are the same"); }
x and y are the same

< undefined




When vou compare x and v, Javascript looks at

X 3 The value in the wewory for x and compares it
10 The Value i the memory for v and ift Hhey
Y : ave the same valve, Hien ¥ and Y are He same.

In the example above where we compared two book objects, we used literal objects for the books. Do you
think the the result would be the same when if we used an object constructor? Let's see:

CODE TO TYPE:

<!doctype html>
<html>
<head>
<title> Comparing objects, take two </title>
<meta charset="utf-8">
<script>
function Book(title, author, published, hasMovie) {
this.title = title;
this.author = author;
this.published = published;
this.hasMovie = hasMovie;
}
var bookl = new Book ("Harry Potter", "JK Rowling", 1999, true);
var book2 = new Book ("Harry Potter", "JK Rowling", 1999, true);
if (bookl == book2) {
console.log("bookl is equal to book2");
} else {
console.log ("bookl is NOT equal to book2");
}
</script>
</head>
<body>
</body>
</html>

Now we use a constructor function, Book(), to create two books, and then testto see if they are equal. LIE‘
Save this in your /AdvJ S folder as objectsTest2.html, and FEYIEWSE |y the console, you see the
message, "book1is NOT equal to book2."

The resultis the same because we are creating two completely different book objects, even though they use
the same constructor and have the same properties.

Okay, so knowing what you know about how objects are stored in memory, what do you think happens when
we change the program like this?:



CODE TO TYPE:

<!doctype html>
<html>
<head>
<title> Comparing objects, take two </title>
<meta charset="utf-8">
<script>
function Book(title, author, published, hasMovie) {
this.title = title;
this.author = author;
this.published = published;
this.hasMovie = hasMovie;

}
var bookl = new Book ("Harry Potter", "JK Rowling", 1999, true);

b} e n k] oy Do i1} T 2 12 (1] 1000
[T SESivAvE =—TIcw DOOKT{ ot roCTCcCcTr 7 UIv NOWI LIS 7 T

var book2 = bookl;
if (bookl == book2) {
console.log("bookl is equal to book2");
} else {
console.log("bookl is NOT equal to book2");

-
cCroe)y

}
</script>
</head>
<body>
</body>
</html>

= and PreVIEW 5% |n the console, you see the message "book1 is equal to book2." Why? Because when
we assign the value of book1to book2 (var book2 = book1), we store the memory location of the data in
book1 into book2, like this:

bookl 495823 [~
title: "Harry Potter"

author: "JK Rowling"

published: 1999

hasMovie: true

book?2 495823 e

So now, when we compare the values of book1 and book2, they are the same: they are both values that point
to the same memory location.

Let's update the program one more time:



CODE TO TYPE:

<!doctype html>
<html>
<head>
<title> Comparing objects, take two </title>
<meta charset="utf-8">
<script>
function Book(title, author, published, hasMovie) {
this.title = title;
this.author = author;
this.published = published;
this.hasMovie = hasMovie;
}
var bookl = new Book ("Harry Potter", "JK Rowling", 1999, true);
var book2 = bookl;
if (bookl == book2) {
console.log("bookl is equal to book2");
} else {
console.log("bookl is NOT equal to book2");
}
bookl.star = "Harry";
console.log (bookl) ;
console.log (book2) ;
</script>
</head>
<body>
</body>
</html>

e and Preview % Take alook at the two book objects that we display in the console. Notice anything
interesting?

OBSERVE:

Book {title: "Harry Potter", author: "JK Rowling", published: 1999, movie: true,
star: "Harry"}

Book {title: "Harry Potter", author: "JK Rowling", published: 1999, movie: true,
star: "Harry"}

In the code we added a new property, star to book1, and setits value to "Harry." Yetwhen you look at the
two objects in the console, you can see that both book1 and book2 now have the property star, with the
value "Harry". How did this happen!?

Well, remember that boo k2 points to the same location in memory that book1 does. So if we change the
data in book1, we're also changing the data in book2 because they are the same object.

What do you think would happen if we changed the title of book2? Try changing the title of book2 to "Harry
Potter and the Sorcerer's Stone." What do you see when you display book1 and book2?

Now, you might be asking, "If | can't compare two different objects using the equality operator to see if they
are the same (thatis, that they have the same properties and values), how do | know if two objects are the
same?"

The answer is that you have to look at each property of an object separately. This isn'ttoo hard to do if the
properties in an object are all primitive values (numbers, strings, booleans). However, if your objects have
nested objects and/or methods, then it gets a bit trickier because then the solution depends on whatyou
mean by "equality" in the case of two objects. What do you think it means for one objectto be "equal" to an
other? A good topic for you to think about.

Various JavaScript libraries have tackled this question by implementing functions that check equality of
objects. Be cautious though because differentlibraries may have differentideas about what equality of objects
means. Make sure the library function works as you expect. For example, you can use the Underscore.js
library's isEqual() function to test the equality of objects.

We covered a lot of ground in this lesson, including truthy and falsey values, implied typecasting and what can happen when
you compare two values, two different kinds of equality operators, and the difference in comparing primitive values and object


http://underscorejs.org/#isEqual

values. Whew! That's lots of detail, some of which you may not have encountered before, but that you'll need to know as you
getinto more advanced JavaScript programming.

Take a break to rest your brain, and then tackle the quizzes and projects to help itall sink in before you move on to the next
lesson.

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.



http://creativecommons.org/licenses/by-sa/3.0/legalcode

Constructing Objects

Lesson Objectives

When you complete this lesson, you will be able to:

e construct objects with your own constructors, and new.

e constructobjectliterals.

e constructempty objects and add new properties.

e compare how a function works as a function, and as a constructor.
e initialize an object's property values in a constructor.

e use the conditional operator.

e explore the value of this when an objectis created.

e constructarrays in two ways.

Justabout everything in JavaScriptis an object, so understanding objects is key to understanding and programming JavaScript.
In this lesson, we'll delve into how we create objects in JavaScript.

Constructing JavaScript Objects

When you construct an objectin JavaScript, you are creating a dynamic collection of property names and values.
You've already seen a couple of different ways to create objects, using a constructor function (like the Book() function
we used in the previous lesson), and using object literals.

Let's take a closer look at three ways you can construct objects and how they are similar to and differentfrom each
other.

Constructing an Object with a Constructor Function

The first way to contruct objects that we'll check out uses the a constructor function. In the previous lesson, we
used a constructor function, Book(), to create book objects, passing in arguments for title, author, the date
the book was published, and whether it had been made into a movie. We'll use that same object here, except
we'll add a new method, display(), to the object:

CODE TO TYPE:

<!doctype html>
<html>
<head>
<title> Constructing objects </title>
<meta charset="utf-8">
<script>
function Book(title, author, published, hasMovie) {
this.title = title;
this.author = author;
this.published = published;
this.hasMovie = hasMovie;

this.display = function() {
console.log(this);
}i
}
var bookl = new Book ("The Hound of the Baskervilles", "Sir Arthur Conan Doyl
e", 1901, true);
bookl.display () ;
</script>
</head>
<body>
</body>
</html>




= Save this in your JAdvJ S folder as objectConstr.html,and Pr®VI8W & Open the console (and
reload the page if you need to), and you see that the constructor function created a book object:

Lles", author: "Sir Arthur Conan Doyle",

¥ Book {title: "The Hound of the Baskerwvi
lay: function}

published: 1981, hasMowvie: true, disp
author: "Sir Arthur Conan Doyle"
» display: function () {
hasMovie: true
published: 1981
title: "The Hound of the Baskerwvilles"
> : Book

(This screenshotis in the Chrome console, butitshould look similar in |IE, Firefox, and Safari).

A constructor function is just like any other function, but we call a constructor function differently from other
functions: we use the word new.

OBSERVE:

var bookl = new Book ("The Hound of the Baskervilles", "Sir Arthur Conan Doyle",
1901, true);

The word new makes all the difference. The new keyword indicates that we are using a function to construct
an object, rather than just execute code (although a constructor function can do thattoo). Within the
constructor function, we refer to the object thatis being created as this:

OBSERVE:

function Book (title, author, published, hasMovie) {
this.title = title;
this.author = author;
this.published = published;
this.hasMovie = hasMovie;

this.display = function () {
console.log (this) ;

}s

When you call a function with new, inside that function, a new, empty objectis created and the this keyword is
setto that object. (Inside the function, this acts justlike a local variable, except that you can't setits value
yourself; that's done for you automatically). Then you use this to set the values of any properties you wantin
that object. Atthe end of the function, you don't have to explicitly return the object you're creating; JavaScript
does thatfor you automatically because you used the new keyword when you called the function. The object
thatis returned is this: the new object that was created when you called the function, that has the properties
you setin the function.

Of course any function could return an object if you wanted it to:

INTERACTIVE SESSION:

> function makeObj () { return { x: 1 }; }
undefined

> var myObj = makeObij () ;

undefined

> myObj

Object {x: 1}

However, in this example, make Obj() is notfa constructor function because we didn't call it with new. Instead
we called the function normally, and inside the function, created an object literal on the fly, and returned it to
the caller of the function make Obj(). These two ways of creating functions might seem similar, but there are a



few key differences. The value of this inside make Obj() is not setto the object that's being created, and if
you don't explicitly return an object from makeObj(), the default return value is undefined.

These differences in how functions behave, depending on whether you call them with new or not, is one
reason why we always (as a convention) use an uppercase letter to begin the name of a constructor function
(like Book()), butuse a lowercase letter to begin the name of a regular function (like make Obj()). That way,
you can tell ata glance at your code whether a function is designed to be a constructor function.

There's one other thing that happens when you create an object by calling a constructor function with new that
doesn'thappen when you create objects in other ways. Look back at the object we created by calling
makeObj():

» function makeObj() { return { x: 1 }; }
undefined

» var myObj = makeObj();
undefined

» myObj

Object {x: 1}

Now compare thatto what you saw in the console earlier for the book1 object (if you still have the page
loaded, you can justtype book1 in the console to see itagain, but make sure you do this in either the
Chrome or Safari console specifically):

', auther: "Sir Arthur Conan Doyle",

Y Book {title: "The Hound of the Baskerville
1 unction}

published: 1981, hasMowvie: true, disp
author: "Sir Arthur Conan Doyle"
» display: function () {
hasMovie: true
published: 1981
title: "The Hound of the Baskerwvilles"
> : Book

[T
e
- A

When you display myObj in the console, you see the word Object nextto the object:

OBSERVE:

Object {x: 1}

Butyou see the word "Book" nextto the book1 object:

OBSERVE:

Book {title: "The Hound of the Baskervilles'", author: "Sir Arthur Conan Doyle",
published: 1901, hasMovie: true, display: function}

In the Book example, we created the bo o k1 object with the Boo k() constructor function. When you create an
object with a constructor function, JavaScript keeps track of that function in a property called constructor.
constructoris a property of the object, in this case book1, that results from calling the constructor function,
Book(). Now, JavaScriptalso sets the constructor property for objects not created with a constructor
function, like the literal object we created and returned from the make Obj() function, butin this case, the
constructor property is setto Object().

You can access the constructor for an object:



INTERACTIVE SESSION:

> myObj.constructor

function Object () { [native code] }

> bookl.constructor

function Book (title, author, published, hasMovie) {
this.title = title;

this.author = author;

this.published = published;

this.hasMovie = hasMovie;

this.display = function() {
console.log(this);

}i

You can think of the constructor function of an object, whether it's Book() or Object(), as determining the
type of the object. This isn't strictly true like itis in statically typed languages like Java, but it can be a handy

way to describe objects. We'll return to this idea in a later lesson when we talk about the instanceof
operator.

For now, the key takeaway for you is to understand how constructing an object using a constructor function

with the new keyword is different from other ways that we create objects.

Constructing an Object Using a Literal

You justsaw an example of creating a literal object and returning it from a function. Let's create another literal

object, another book, so we can compare the result directly with the bo o k1 object we created using a
constructor function. Modify objectConstr.html as shown:



CODE TO TYPE:

<!doctype html>
<html>
<head>
<title> Constructing objects </title>
<meta charset="utf-8">
<script>
function Book(title, author, published, hasMovie) {
this.title = title;
this.author = author;
this.published = published;
this.hasMovie = hasMovie;

this.display = function() {
console.log(this);
}i
}
var bookl = new Book ("The Hound of the Baskervilles", "Sir Arthur Conan Doyl
e", 1901, true);
bookl.display () ;

var book2 = {
title: "The Adventures of Sherlock Holmes",
author: "Sir Arthur Conan Doyle",
published: 1892,
movie: true,
display: function() {
console.log(this);
}
}i
book2.display () ;

</script>
</head>
<body>
</body>
</html>

= and Preview % Open the console, and compare book1 and book2 (using Chrome or Safari):

¥ Book {title:r "The Hound of the Baskervilles", author: "Sir Arthur Conan Doyle", published: 1961, hasMovie: true, display: function}
author: "Sir Arthur Conan Doyle"
» display: function ()
hasMovie: true
published: 1981
title: "The Hound of the Baskerwilles"
» _ proto_ i Book
¥ 0bject {title: “"The Adventures of Sherlock Holmes", author: “Sir Arthur Conan Doyle", published: 1892, movie: true, display: function}
author: "Sir Arthur Conan Doyle"
» display: function ()
movie: true
published: 1892
title: "The Adventures of Sherlock Holmes"
» __proto__: Object

undefined

These two objects are similar: both have the same property names, both have a display() method, and the
types of all the property values are the same. However, if you look at the constructors forbook1 and book2,
you'll see (justlike in myObj earlier), that the constructor for book1 is Book(), because we created it using a
constructor function, but the constructor forbook2 is Object() because we created it using an object literal:



INTERACTIVE SESSION:

> bookl.constructor
function Book(title, author, published, hasMovie) {
this.title = title;
this.author = author;
this.published = published;
this.hasMovie = hasMovie;

this.display = function() {
console.log(this);
}i
}
> book2.constructor
function Object () { [native code] }

The [native code] means that the implementation of the Object() constructoris hidden because it's
internal to the browser.

The property in the objects called __proto__is the last property in both the book1 and book2 objects:

¥ Book {title: "The Hound of the Baskervilles", author: "Sir Arthur Conan Doyle", published: 1981, hasMovie: true, display: function}
author: "Sir Arthur Conan Doyle"
» display: function () {
hasMovie: true
published: 1981
title: "The Hound of the Baskervilles"

»> i Book
¥ 0bject {title:r "The Adventures of Sherlock Holmes", auvthor: "Sir Arthur Conan Doyle", published: 1892, movie: true, display: function}
author: "Sir Arthur Conan Doyle"
» display: function () {

movie: true

published: 1892

title: "The Adventures of Sherlock Holmes"
[3 : Object

undefined

The value of __proto__ forbook1 is Book, and the value of __proto__ forbook2 is Object. You might
be thinking thatthe __proto__ property mustbe related to the constructor function for an object, and you'd be
right (although they are not the same thing).

You also might notice thatthe constructor property is notlisted in the book1 and book2 objects’
properties. That's because this property is inherited from the object's prototype. (As you might guess, the
__proto__ property is also related to the prototype). We'll talk more about prototypes in a later lesson.

What about this in a literal object? You already know that you can use this in a method of an object to refer
to "this object," but unlike in a constructor function, we don't (and can't) use this to initialize object properties.
Instead, we create properties and initialize them by specifying the name/value pairs in an object, by literally
typing them. (That's why it's called an object literal). The only time this refers to the objectis when you call
one ofits methods. (How this gets setand what it gets setto is yet another topic we'll come back to in more
depth later).

Constructing an Object Using a Generic Object Constructor

Another way to create an object literal is to start with an empty object, and then add properties to it. You can
create an empty, generic objectin one oftwo ways:

OBSERVE:

var objl = { };
var obj2 = new Object();

Both of these approaches to create an object do the same thing. You'll see an empty object created the first
way more often (because it's a little easier to write), butit's instructive to understand the second way as well.
When you create an object with new Object(), it's justlike when you create an object with new Book(),
exceptthat Object() is a built-in constructor function that you don't have to write yourself. You don't pass any
arguments to Object() to initialize object properties in the constructor function, instead, you add them all
after the objectis created. Modify object Constr.html as shown:



CODE TO TYPE:

<!doctype html>
<html>
<head>
<title> Constructing objects </title>
<meta charset="utf-8">
<script>
function Book(title, author, published, hasMovie) {
this.title = title;
this.author = author;
this.published = published;
this.hasMovie = hasMovie;

this.display = function() {
console.log(this);
}i
}
var bookl = new Book ("The Hound of the Baskervilles", "Sir Arthur Conan Doyl
e", 1901, true);
bookl.display () ;

var book2 = {
title: "The Adventures of Sherlock Holmes",
author: "Sir Arthur Conan Doyle",
published: 1892,
movie: true,
display: function() {
console.log (this);
}
bi
book2.display () ;

var book3 = new Object(); // same as var book3 = { };
book3.title = "A Study in Scarlet";
book3.author = "Sir Arthur Conan Doyle";

book3.published = 1887;

book3.movie = false;

book3.display = function() {
console.log(this);

}i

book3.display () ;

</script>
</head>
<body>
</body>
</html>

We added the exact same properties that we added to book1 and book2, only with some different values,
because it's a differentbook. book3 also has a display() method, justlike boo k1 and book2.

= and PreVIeW % |n the console, compare book3 with book2 and bo okA.



¥ Book {title: "The Hound of the Baskervilles", author: "Sir Arthur Conan Doyle", published: 1901, hasMovie: truve, display: function}
author: "Sir Arthur Conan Doyle"
» display: function ()
hasMovie: true
published: 1981
title: "The Hound of the Baskervilles"

L3 Book

Y Object {title: "The Adventures of Sherlock Holmes", author: “"Sir Arthur Conan Doyle", published: 1892, movie: true, display: functien}
author: "Sir Arthur Conan Doyle"
» display: function () {
movie: true
published: 1802
title: "The Adventures of Sherlock Holmes"
prot i Dbject

[

¥ Object {title: "A Study in Scarlet", auther: "Sir Arthur Conan Doyle", published: 1887, movie: false, display: function}
author: "Sir Arthur Conan Doyle"
» display: function ()
movie: false
published: 1887
title: "A Study in Scarlet"

[ __: Dbject

book3 looks similarto book2, because book3 is also an object literal; it was just created in a slightly
different way. Notice that the constructor for book3 is also Object(), which you can testin the browser
console:

INTERACTIVE SESSION:

> book3.constructor
function Object () { [native code] }

So, What's the Best Way to Make an Object?

You've seen three different ways to construct an object (you'll see a fourth in a later lesson), but which is the
bestway?

That depends on the situation. If all you need is a quick, one-off object, then creating an object literal like we
did with book2 or book3 is probably good enough. However, if you know that you're going to need multiple
book objects, writing a constructor function like Book(), that you can use to make many book objects is a
better choice. You'll also wantto consider whether the objects you're creating are, say, Books or
Magazines. As you've seen, objects created with a constructor function have that extra information about
how they were created, which can be useful. We'll see an example of thatin a later lesson, when we talk about
prototypes.

Initializing Values in Constructors

Let's go back to constructor functions now and look at ways you can initialize the properties of the object
you're constructing with the function. We'll use a different example, so open a new file:



CODE TO TYPE:

<!doctype html>
<html>
<head>
<title> Initializing objects </title>
<meta charset="utf-8">
<script>
function Point (x, y) {
if (x == undefined || x == null) {
this.x = 50;
} else {
this.x = x;

if (y == undefined || y == null) {
this.y = 50;

} else {
this.y = y;

}

// Make a toString() method we can use to display the point
this.toString = function() {
return "[" + this.x + ", " + this.y + "1";
}
}

// Can have code in constructors too
var p = new Point();
console.log("My point is: " + p.toString());
</script>
</head>
<body>
</body>
</html>

= Save itin your /AdvJS folder as point.html, and PT®VI®W % Open the console (and reload the page if
you need to); the Point object, p, is displayed like this:

OBSERVE:

My point is: [50, 50]

In this code, we've gota Point() constructor function to create Point objects. Let's discuss the code:



OBSERVE:

function Point (x, y) {

if (x == undefined || x == null) {
this.x = 50;
} else {

this.x = x;

}

if (y == undefined || y == null) {
this.y = 50;

} else {
this.y = y;

}

// toString(): display the point
this.toString = function () {
return "[" + this.x + ", " + this.y + "1";
}
}

var p = new Point();
console.log ("My point is: " + p.toString()):;

We use aconstructor function, Point() to create a Pointobject, p. So, if you look at the constructor
property of the object p, you'll see the Point() function.

Point() actually expects two arguments, x and y, which are the coordinates of the point, but we call Point()
with no arguments. It turns out that JavaScriptis totally okay with this, but unless we do something further, the
x and y coordinates of the pointwe're trying to create will be undefined. So, we write code to testto see
whether the x and y values are passed in. If they are, we initialize this.x and this.y with the values x and y
respectively. If we don't pass in any values, we use the default value, 50 for both this.x and this.y.

Now, you might be tempted to take a shortcut and rewrite if (x == undefined || x == null) {... } as if (!x) {
... } (based on what you learned in the previous lesson about truthy and falsey values), but be careful!l We
might wanta pointat0, 0, and 0 is falsey, so that shortcut won't work for us in this case. We can, however,
shorten the initialization a bit by making use ofthe conditional operator. Modify point.html as shown:



CODE TO TYPE:

<!doctype html>

<html>

<head>
<title> Initializing objects </title>
<meta charset="utf-8">

<script>
function Point (x, y) {
this.x = (!x && x != 0) ? 50 : x;
this.y = (!'y && y !'= 0) 2 50 : y;
= L <l £ <l Ll 11 L
T T T =———Currac T I T =TI/ 1
i — =i at
2= -—50
hl 1 L
+—etse—
=lo
CITLT = 7
—_— 7+
= L — <l £ o <l L — 11 L
- ————urdefined— ==t
=lo O
CTIiILT A
hl 1 L
T TSt
I
CIT T =7
—F

// Make a toString() method we can use to display the point
this.toString = function() {
return "[" + this.x + ", " + this.y + "1";
}
}

// Can have code in constructors too
var p = new Point();
console.log ("My point is: " + p.toString());
</script>
</head>
<body>
</body>
</html>

= and PreVIEW S vou see the same result as before.

Now, some programmers avoid the conditional operator (also written ?: for short) like the plague, because
it's harder to read, and you can always write the same code using an easier-to-read if/else statement. If you're
in this camp, feel free to use iflelse statements instead. Still, you need to know how to read statements that
use the conditional operator too; they are used fairly often to initialize objects.

So, you read this:

OBSERVE:

this.x = (!x && x != 0) ? 50 : x;

like this: "Ifnotx AND x is notequal to 0, THEN setthis.xto 50 ELSE set this.x to x."
In other words, you read ? as THEN and : as ELSE.

This statement checks to see if Ix is true, which it will be if the parameter x is null, undefined, or 0. Then, to
handle the 0 case, we check to make sure x 1= 0. Ifx is 0, this returns false, so the whole conditional is false,
and we setthis.x equal to x, which is 0 in this case. If x is undefined or null, we setthis.x to 50. If x is a non-
zero number we setthis.x to x.

Don't get the parameter x mixed up with the property this.x. They are two different variables! Remember that
we're passing a value into the constructor to initialize the property this.x. The value we pass in gets assigned
to the parameter x.

Each Pointobject also has a method, toString(), that creates a string representation of the point for display.
IntoString() we use this.x and this.y to create the string representing the Point. Make sure to use the



object's properties, and not the parameters in the method. If you forget, and use x and y instead of this.x and
this.y, what could happen? Well, if Point() is called with no arguments, then the parameters x and y will be
undefined. While the Point's x and y properties are set correctly to 50 each, you'll see [ undefined,
undefined ] when you call the toString() method.

this
We've talked a bit about what happens to this when you're constructing objects. To amek sure you've gota

handle on this when you're working with constructor functions, regular functions, objects, and methods, let's
take a look atanother example. Create this new file:



CODE TO TYPE:

<!doctype html>
<html>
<head>
<title> What happens to this </title>
<meta charset="utf-8">
<script>
//
// Rectangle constructor that makes rectangle objects
//
function Rectangle (width, height) {
console.log("This in Rectangle is: ");
console.log(this);

this.width = width || 0;
this.height = height || 0;
this.getArea = function() {

console.log("This in Rectangle's getArea is: ");
console.log(this);
return this.width * this.height;

i

var rectl = new Rectangle (5, 10);

console.log("Area of rectangle 1: " + rectl.getArea());
//

// A function that makes rectangle objects

//

function makeRectangle (width, height) {
console.log("This in makeRectangle is: ");
console.log(this);

return {
width: width || O,
height: height || O,
getArea: function() {
console.log("This in makeRectangle's getArea is: ");
console.log(this);
return this.width * this.height;

}i
}

var rect2 = makeRectangle (5, 10);
console.log("Area of rectangle 2: " + rect2.getAreal());

// getArea function

function getArea(r) {
console.log("This in getArea is: ");
console.log(this);
return (r.width * r.height);

}

console.log("Area from getArea(rectl): " + getArea(rectl));

</script>
</head>
<body>
</body>
</html>

= Save this in your /AdvJS folder as rectangle.html and P™®VI®W 2 |n the console, you see lots of
output:



This in Rectangle is:

Rectangle {}

This in a Rectangle's gethArea is:

» Rectangle {width: 5, height: 18, getArea: function}

Area of rectangle 1: 58

This in makeRectangle is:

 Window {top: Window, window: Window, location: Location, external: Object, chrome: Object.}
This in a rectangle's gethArea is:

» Object {width: 5, height: 18, getArea: function}

Area of rectangle 2: 58

This in getArea is:

» Window {top: Window, window: Window, location: Location, external: Object, chrome: Object.}
Area from getArealrectl): 5@

There's quite a bitgoing on here, so we'll step through it one piece ata time:

OBSERVE:
//

// Rectangle constructor that makes rectangle objects
//
function Rectangle (width, height) {
console.log("This in Rectangle is: ");
console.log(this) ;

this.width = width || O0;
this.height = height || 0;
this.getArea = function () {
console.log("This in a Rectangle's getArea is: ");
console.log(this) ;
return this.width * this.height;
}i
}
var rectl = new Rectangle (5, 10);
console.log("Area of rectangle 1: " + rectl.getArea())

In this code, we've gota Rectangle() constructor function that we can use to make rectangles with width
and height properties, and a method, get Area() thatreturns the area of the rectangle. We've added calls to
console.log() in two different places within the constructor function to inspect the value of this.

When we call new Rectangle (5, 10) to create a rectangle object, rect1, the first two lines of code in the
function display the value of this. The resultis an empty Rectangle object:

OBSERVE:

This in Rectangle is:
Rectangle {}

When we call a construction function with new, the first thing that happens is a new, empty objectis created.
This is the Rectangle { } object we see here in the console. Its constructoris Rectangle, and itdoesn't
have any properties (yet).

The rest of the constructor function assigns values to the width, height and getArea() properties, so that
when the objectis returned at the end of the function, all of its properties have been created and given values.

Next, we call the getArea() method of the rectangle object we just created. The first two lines of
the getArea() method display the value ofthis in the console. We see that this is a Rectangle object, and
that now it has the properties we created in the constructor:



OBSERVE:

This in Rectangle is:

Rectangle {}

This in Rectangle's getArea is:

Rectangle {width: 5, height: 10, getArea: function}
Area of rectangle 1: 50

Finally, we display the result of the call to getArea(), which is 50.

So in both the body of the constructor function and the method, this refers to "this object,” thatis, the
Rectangle object created by the constructor. The first use of this is the object when it's created and modified
at object creation time (when we call the constructor function). The second use of this is the objectwhen it's
accessed after we call the object's method, get Area(). In this case, the value of this is assigned
automatically because you are calling a method of an object.

Now let's compare that to what happens when we call makeRectangle() to make a rectangle object.

OBSERVE:
//

// A function that makes rectangle objects

//

function makeRectangle (width, height) ({
console.log("This in makeRectangle is: ") ;
console.log(this) ;

return {
width: width || O,
height: height || O,
getArea: function() {
console.log("This in makeRectangle's getArea is: ");
console.log(this) ;
return this.width * this.height;

}s
}

var rect2 = makeRectangle(5, 10);
console.log("Area of rectangle 2: " + rect2.getArea());

makeRectangle() isn'ta constructor function, it's justa regular function, so we don't call it with new; we just
call itthe regular way. The first two lines of code in makeRectangle() display the value of this. You can
see thatthis is the global, Window object:

OBSERVE:

This in makeRectangle is:

Window {top: Window, window: Window, location: Location, external: Object, chrom
e: Object®}

This in a makeRectangle's getArea is:

Object {width: 5, height: 10, getArea: function}

Area of rectangle 2: 50

There is no object being created automatically by make Rectangle(). While we are creating an objectin this
function, that objectis not the value of this. We create that objectin the next statement (by returning an object
literal).

However, when we call the getArea() method of the object returned by makeObject(), rect2, you can see
that the value of this in the get Area() method is indeed an object:



OBSERVE:

This in makeRectangle is:

Window {top: Window, window: Window, location: Location, external: Object, chrom
e: Object®}

This in makeRectangle's getArea is:

Object {width: 5, height: 10, getArea: function}

Area of rectangle 2: 50

The object that we see is rect 2, "this object," thatis, the object whose method we called. Again, notice that
the object's constructoris Object() (compare to the constructor for rect1 above).

Finally, we display the area for rect2, which is 50.

We've also included a function get Area() that takes a rectangle object and returns the area:

OBSERVE:

// getArea function

function getArea(r) {
console.log("This in getArea is: ");
console.log(this) ;
return (r.width * r.height);

}

console.log("Area from getArea(rectl): " + getArea(rectl)) ;

The value ofthis in the getArea() function displays as:

OBSERVE:

This in getArea is:

Window {top: Window, window: Window, location: Location, external: Object, chrom
e: Object®}

Area from getArea(rectl): 50

Once again, this is the global Window object. Justlike makeRectangle(), getArea() is justa regular
old function that happens to take an object and compute something with it. There is no "this object" for this
function, so the value of this gets set to the Window object automatically.

Keeping track of the value of this can be tricky in JavaScript, butit's important. You'll need to understand how
the value of this is set, and whatit's setto in all situations. We'll also revisitthis in later lessons.

Constructing Array Objects
Before we leave this lesson, let's talk about constructing Array objects. Arrays are objects, although you
should think of them as a special kind of object with features that the objects we've been creating so far don't
have, like an index, and ordering imposed on the items in the object.

There are two ways to create an Array object. Type these commands in the console:

INTERACTIVE SESSION:
> var al = new Array();
undefined

> all0] = 1;

1

> all[l] = 2;

2

> al[2] = 3;

3

> al

[1, 2, 3]

Here we created an empty array, a1, using the Array() constructor function, calling it with new like we would



any other constructor function. Then we add array items one ata time to the 0, 1, and 2 indices in the array.
This is analogous to using new Object() and adding object properties one ata time, like we did with book3
earlier in the lesson.

You can use bracket notation to access an object's properties, like this:

OBSERVE:

var theTitle = bookl["title"];

the bracket notation is used to access the items in an array, except we use an index instead of a property
name.

The second way to create an Array is to use the array literal notation:

INTERACTIVE SESSION:
> var a2 = [1, 2, 3];
undefined

> a2

[1, 2, 3]

This does exactly the same thing as the previous example; it creates a new array with values atthe 0, 1, and 2
indices, butit's a lot shorter to write! In practice, you'll rarely use the Array() constructor to create an array.
Instead you'll use the more concise array literal notation. One exception is when you need to create an empty
array with a predefined number of indices:

INTERACTIVE SESSION:

> var a3 = new Array(100);
undefined

> a3

[undefined x 100]

This creates an array with length 100, with all the items at every index setto undefined, and the Chrome
console uses the shorthand "[undefined x 100]" to display the value of this array. (Other browsers don'tuse
this shorthand, so you'll see different results in different browsers when you ask for the value of a3).

Justlike any other object, arrays can have named properties, and in fact, come with a named property,
length, thatyou'll use to get the length of your array:

INTERACTIVE SESSION:

al.length
az.length

a3.length
00

=V WYV wVv

Just like other objects, you can use the constructor property to inspect the constructor function for the array:



INTERACTIVE SESSION:

> al.constructor
function Array() { [native code] }
> a2.constructor
function Array() { [native code] }
> a3.constructor
function Array() { [native code] }

In each case, the constructor for the array is Array(). This is analogous to Object() being the constructor for
objects created with literal notation or with new Object().

In this lesson, you learned about constructing objects, how constructor functions work, the difference between objects created
with a constructor function and those created using literal notation, and what happens to this when you constructand use an
object.

In the nextlesson, we'll explore more object-related goodies: prototypes and inheritance. Before you dive in though, do the
quizzes and projects, and then take a well-earned break.

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.



http://creativecommons.org/licenses/by-sa/3.0/legalcode

Prototypes and Inheritance

Lesson Objectives

When you complete this lesson, you will be able to:

e useinstanceofto check the constructor, or "type," of a specific object.

e examine the prototype property of a constructor function.

e add methods to an object's prototype to share them among objects.

e explore what happens to this in an object's prototype.

e examine an object's prototype chain.

e use prototypal inheritance to access properties from higher up the prototype chain.

e determine if a property is defined in an object or an object's prototype with hasOwnProperty().
e examine the prototype of an objectin the console using __proto__.

JavaScriptis an "object-oriented language" in two ways: firstit's object-oriented in that just about everything in the language is
an object (except for a few primitives). Second, it's object-oriented in the sense that objects can inherit properties from other
objects and, thus, share code with them. However, if you have had any experience with a language like Java or C++ or C#, be
prepared to think differently in this lesson, because JavaScript objects inherit properties differently than those languages do.

Object-Oriented Programming in JavaScript

The key to understanding JavaScript objects work, and how they inherit properties, is to understand object
prototypes. Before we jump into prototypes though, let's review how objects are created with constructor functions,
and also introduce a new operator, instanceof.

instanceof

Let's begin our in-depth study of objects by creating an example. We'll make this example a bitmore
interesting and display a representation of the objects in the web page (the pointis to understand how objects
work though, so don'tgettoo caughtup in the cool web page part of this example). Create a new HTML file as
shown, and then go through it, step by step:



CODE TO TYPE:

<!doctype html>
<html>
<head>
<title> Shapes with Prototypes and Inheritance </title>
<meta charset="utf-8">
<style>
html, body, div#container {
width: 100%;
height: 100%;
margin: Opx;
padding: Opx;
}
div#container {
position: relative;
}
.shape {
position: absolute;
text-align: center;
}
.shape span {
position: relative;
top: 44%;
}
.square {
background-color: lightblue;
}
.circle {
background-color: goldenrod;
border-radius: 50%;
}
</style>
<script>
function Circle (name, radius) {
this.name = name;
this.radius = radius;
this.getCircumference = function() {
return this.radius * Math.PI * 2;
}i
this.getName = function() {
return this.name;

}i

function Square (name, size) {
this.name = name;
this.size = size;
this.getArea = function() {
return this.size ~ 2;
bi
this.getName = function () {
return this.name;
}i
}
// Global variables so we can inspect them
// easily in the console! (Otherwise, we'd normally
// make them local to the window.onload function).
var circlel = new Circle("circlel"™, 100);
var circle2 = new Circle("circle2", 200);
var square = new Square ("my square", 150);

window.onload = function() {
addShapeToPage (circlel) ;
addShapeToPage (circle?2) ;
addShapeToPage (square) ;
}i




function addShapeToPage (shape) {
var container = document.getElementById("container");
var div = document.createElement ("div") ;
var width = 0;

var classes = "shape ";

if (shape instanceof Circle) {
classes += "circle";
width = shape.radius;

} else if (shape instanceof Square) {
classes += "square";
width = shape.size;
}
div.setAttribute ("class", classes);
div.style.left = Math.floor (Math.random() * (container.offsetWidth - 175)) +
"pxll ;
div.style.top = Math.floor (Math.random() * (container.offsetHeight - 175)) +
"pX",‘
div.style.width = width + "px";
div.style.height = width + "px";

var span = document.createElement ("span");
span.innerHTML = shape.getName () ;
span.style.visibility = "hidden";
div.appendChild (span) ;

div.onmouseover = function() {
// this is the div (the shape) you click on
this.firstElementChild.style.visibility = "visible";

i

container.appendChild (div) ;

}

</script>
</head>
<body>
<div id="container"></div>
</body>
</html>

= Save this in your JAdvJS folder as proto.html, and PrVIEW 5 voy see three shapes on the page:
two circles, and a square. Open the console, and verify that you can access the three global variables we
created for the three shapes:

INTERACTIVE SESSION:

> circlel

Circle {name: "circlel'", radius: 100, getCircumference: function, getName: funct
ion}

> circle2

Circle {name: "circle2", radius: 200, getCircumference: function, getName: funct
ion}

> square

Square {name: "my square", size: 150, getArea: function, getName: function}

We have much to discuss in this code, including a new operator, instanceof. We'll go overitone chunk ata
time.

First, we have two constructor functions, Circle() and Square():



OBSERVE:

function Circle (name, radius) {
this.name = name;
this.radius = radius;
this.getCircumference = function() {
return this.radius * Math.PI * 2;
};
this.getName = function() {
return this.name;
}
}

function Square (name, size) {

this.name = name;

this.size = size;

this.getArea = function() {
return this.size * 2;

Iy

this.getName = function() {
return this.name;

}

Circle() and Square() are similar to other constructor functions we've worked with in this course. The two
constructors are almostidentical; both have a name property and a getName() method. Circle() has a

radius property and a getCircumference() method, while Square() has a size property and a getArea()
method.

Next, we create three objects from the two constructors: two circles and a square:

OBSERVE:

var circlel = new Circle ("circlel", 100);
var circle2 = new Circle ("circle2", 200);
var square = new Square ("my square", 150);

We pass in initial values for the name property, and the radius and size properties for the circles and square,
respectively. We can inspect these global variables in the console.

When we display the three objects in the console, we use a constructor function to make each kind of shape,

we know that the circles are made from the Circle() constructor and the square is made from the Square()
constructor:

OBSERVE:

> circlel

Circle {name: "circlel", radius: 100, getCircumference: function, getName: funct
ion}

> circle2

Circle {name: "circle2", radius: 200, getCircumference: function, getName: funct
ion}

> square

Square {name: "my square', size: 150, getArea: function, getName: function}

We have a short function assigned to the window.onload property that will run once the page is loaded into
the browser and the DOM is ready. This function calls the addShapeToPage() function for each shape
we've created.



OBSERVE:

function addShapeToPage (shape) {
var container = document.getElementById("container");
var div = document.createElement ("div") ;
var width = 0;
var classes = "shape ";
if (shape instanceof Circle) ({
classes += "circle";
width = shape.radius;
} else if (shape instanceof Square) {
classes += "square";
width = shape.size;
}
div.setAttribute ("class", classes);
div.style.left = Math.floor (Math.random() * (container.offsetWidth - 175)) +
"px";
div.style.top = Math.floor (Math.random() * (container.offsetHeight - 175)) +
"pX" ’.
div.style.width = width + "px";
div.style.height = width + "px";

var span = document.createElement ("span") ;
span.innerHTML = shape.getName () ;
span.style.visibility = "hidden";
div.appendChild (span) ;

div.onmouseover = function () {
// this is the div (the shape) you click on
this.firstElementChild.style.visibility = "visible";
bi

container.appendChild (div) ;

The addShapeToPage() function adds the shapes to the page. It has a shape parameter, which is either a
circle or a square, and creates a <div> elementfor that shape. Of course, we wantour circles to look like
circles and our squares to look like squares, so we've created CSS classes to style the <div>elements for
each kind of shape appropriately. Take a look back at the CSS and you'll see that we have a shape class for
both kinds of shapes, a square class specifically for squares, and a circle class specifically for circles:

OBSERVE:

.shape {
position: absolute;
text-align: center;
}
.shape span {
position: relative;
top: 44%;
}
.square {
background-color: lightblue;
}
.circle {
background-color: goldenrod;
border-radius: 50%;

InaddShapeToPage(), we need to know if the shape thatwas passed in is a circle or a square. Why?
Because ifit's a circle, we want to add the circle class to the <div>, ifit's a square, we want to add the square
class to the <div>. In addition, in order to set the width of the <div> correctly, we'll need to access either the
radius property for circles or the size property for squares.

So how do we determine if the shape thatgotpassed in is a square or a circle? We use the instanceof
operator:



OBSERVE:

var width = 0;

var classes = "shape ";

if (shape instanceof Circle) ({
classes += "circle";
width = shape.radius;

} else if (shape instanceof Square) ({
classes += "square";
width = shape.size;

The instanceof operatoris a binary operator: it takes two arguments. The operand on the leftis the object
(you want to determine the type of that object) and the operand on the rightis the name of the constructor
function used to create the object. In this case, we use the instanceof operator to find outif the shape is a
Circle. Ifitis, we know that the shape was constructed using the Circle() constructor function, and it's a
circle object. Similarly, ifit's Square, we know that shape is a square.

Once we know whether the shape is a circle or a square, we can setthe classes and width variables, so the
shapes will display correctly in the web page.

Then we set up the rest of the <div> to display a circle or square in the web page, and add the <div> to the
DOM so itdisplays in the page. We add a mouseover handler to the <div>. About that handler:

OBSERVE:

div.onmouseover = function() {
// this is the div (the shape) you click on
this.firstElementChild.style.visibility = "visible";
}:

In the previous lesson we talked aboutthis and whatthis is setto when you are constructing an object, or
calling the method of an object.

In most circumstances, when an event handler thatis attached to a DOM objectis called, this is setto the
DOM object on which that eventtook place. So in this case, we attached a mouseover handler to the <div>
object that represents our shape. When you mouse over that <div>, and the handler function is called, this is
setto the <div> object, notthe shape object.

This can trip you up really easily, and yet another reason it's important to keep track of what this is.

Prototypes
So whtare prototypes anyway?

Whenever you create an objectin JavaScript, you get a second object with it, its prototype. The prototype is
associated with the constructor of an object. Every function has a property, prototype, that holds a prototype
object. Whenever you use that function as a constructor to create a new object, that new object gets the object
in that function's prototype property as its prototype. So, the Circle() constructor function has a
prototype property that contains a Circle prototype object. If you use Circle() to create a new object,
circle1, circle1's prototype will be Circle.prototype (thatis, the objectin the prototype property of the
Circle() constructor).

You can take a look at the prototype of a constructor function by using the prototype property of the
function, like this:



INTERACTIVE SESSION:

> Circle
function Circle (name, radius) {
this.name = name;
this.radius = radius;
this.getCircumference = function() {
return this.radius * Math.PI * 2;
}i
this.getName = function() {
return this.name;
}
}
> Circle.prototype
Circle {}
> Square
function Square (name, size) {
this.name = name;
this.size = size;
this.getArea = function() {
return this.size ~ 2;
}i
this.getName = function () {
return this.name;
}
}
> Square.prototype
Square {}

When you type Circle atthe console, you see its value is the constructor function, Circle (). When you type in
Circle.prototype, you'll see its value is an object, Circle {}. The Circle.prototype objectis an empty object;
there's nothing in it. However, any object you make using the Circle() constructor gets this Circle {} object
as its prototype.

You can find out the prototype of an object by getting the prototype of that object's constructor, like this:

INTERACTIVE SESSION:

> circlel.constructor.prototype
Circle { }

Try getting the prototype of the circle2 and square objects using the console. Do you get the result that you
expect?

It can get a little confusing atfirst to keep all this straight. But just think of it like this: whenever you make an
object, that object gets a prototype. A prototype is just an object! And if you wantto access an object's
prototype, you use that object's constructor function's prototype property.

So, when you write new Circle("circle1",100) you get back an object, circle1. The circle1 object's
prototype is another object, Circle.prototype. Note that while we say circle1's prototype is
Circle.prototype, thatdoesn't mean that circle1 has a property named prototype (itdoesn't). The
relationship between circle1 and its prototype is notthe same as circle1 having a property. Now, you can
get to the prototype of circle1 through circle1's constructor function, Circle(), using the constructor
function's prototype property: Circle.prototype, butthat's a different thing. Maybe this diagram will help
make the distinction more clear:



Here's ou Circle _ ' T
the Civcle function (objectd W;mmw

covstructor function T
tts a function, bt its hors & property, prototyp is avother object,
Circle.prototype.

also an object. \

prototype

function Circle(name, radius) {

When vou create an object from ;
the Circle constructor vsing new...
N var circlel = new Circle("cireclel", 100); f’-rh€PVO+UhﬂM OP
/' circlel is
- Yo get an object wiose Circle.prototype.
prototype is Circle,. ———— NIO'he Hat _
Circle.prototype is
vot a property of
circlel/ If's circlel's
prototype.

Now, because you are creating the object circle2 using the same constructor function, Circle(), circle2 has

the same prototype as circle1:

> circlel.constructor.prototype

Circle { }
> circle2.constructor.prototype

Circle { }
> circlel.constructor.prototype === circle2.constructor.prototype

true

I should point out that the prototype property is a property of the Circle() function. Yes, functions can have
properties! Why? Because functions are objects! They are special objects, but they are objects justthe same

We'll talk about this in more detail a little later.

Prototypes of Literal Objects

Let's see an example that uses the prototype of a literal object:



INTERACTIVE SESSION:

> var myObject
undefined

> myObject
Object {x: 3}
> myObject.constructor

function Object () { [native code] }
> myObject.constructor.prototype
Object { }

> myObject instanceof Object

true

> myObject instanceof Circle

false

{ x: 3 };

The literal myObject object's constructoris Object(), and its prototype is Object.prototype. We can
check to see ifmyObject is an Object usinginstanceof. For good measure, we check to see if myObject
is a Circle, and it's not. Good!

What is a Prototype Good For?

All this talk about prototypes, and you're probably still wondering, what good is a prototype? Why whould |
care if an object has a prototype?

This is where "object-oriented programming"” comes in. A huge advantage of a prototype is that you can put
properties that will be shared across all objects and have that prototype, in the prototype object.

When you try to access a property of an object, whether that property contains a primitive value or a method,
JavaScriptfirstlooks for that property in the object; if JavaScript doesn't find the property there, itlooks in the
prototype. If it finds the property there, that's the value JavaScript uses. This is called the prototype chain.
Let's take a closerlook at how this works.

circle1 and circle2 each have a different name, and a different radius, but the two methods,
getCircumference() and getName(), are the same for both objects—they don't change.

However, when you create two separate objects from the same constructor, like we did:

OBSERVE:

var circlel = new Circle("circlel"™, 100);
var circle2 = new Circle("circle2", 200);

each object gets its own copy of the getCircumference() and getName() methods:



Circle.prototype
-
"I circlel's prototype is Circle.

circlel 390822 1~ .-
- name: "circlel"
i radius: "100"
l:' getCircumference: function() {...}
.'l getName: function() { -} \
] Bothh circlel and
: circle2 contain He
wethods.,

. circle2's prototype is Circle.
circle2 419981
name: "circle2"
“200“

radius:
getCircumference:

getName: function() {

function() {...}
)

In this example, itdoesn't matter so much, butin an instance where each object has a large number of
properties or methods, it can become problematic. Each object takes up memory. The more memory the

object takes up, the more memory your program uses and the slower it will be.

The Circle.prototype ofboth circle1 and circle2 is currently an empty object:

INTERACTIVE SESSION:

> circlel.constructor.prototype

Circle { }

Similarly, the Square.prototype is currently an empty object.
We can move the two methods that both circles contain into the Circle.prototype object, and we can move

the methods that all squares getinto the Square.prototype object. Modify proto.html as shown:



CODE TO TYPE:

function Circle (name, radius) {
this.name = name;

this.radius = radius;
oo e £ — o VAR L
this—getCireumferen —frretionr—t
= T 1o =3 W P DT =3 2
1T T COLIT CITTTT e LT I CIT T I 12
4
oo o £ A=z L
CITT -\jC CINTTIT T TOITC CTITUIT ) 1
e T
returr—this—rames
—
Circle.prototype.getCircumference = function() {

return this.radius * Math.PI * 2;
}i
Circle.prototype.getName = function() {
return this.name;

}i

function Square (name, size) {
this.name = name;

this.size = size;
=l o 4= — £ g L L
this—getirea—furctiont—
+ T o AN 2
reEtrr—thissize :
4
I g £ =z AY L
CITT -HCL,].\JCUH T TOITC CTTUIT ) 1
A= s
1 COL1IT CITITOS . TTTITE,
—

}

Square.prototype.getArea = function() {
return this.size * this.size;

}i

Square.prototype.getName = function() {
return this.name;

}i

// Global variables so we can inspect them

// easily in the console! (Otherwise, we'd normally
// make them local to the window.onload function).
var circlel = new Circle("circlel"™, 100);

var circle2 = new Circle("circle2", 200);

var square = new Square ("my square", 150);

window.onload = function() {
addShapeToPage (circlel) ;
addShapeToPage (circle?2) ;
addShapeToPage (square) ;
}i

function addShapeToPage (shape) {
var container = document.getElementById("container");
var div = document.createElement ("div");
var width = 0;
var classes = "shape ";
if (shape instanceof Circle) {
classes += "circle";
width = shape.radius;
} else if (shape instanceof Square) {
classes += "square";
width = shape.size;

div.setAttribute ("class", classes);

div.style.left = Math.floor (Math.random() * (container.offsetWidth

an ;

- 175))

div.style.top = Math.floor (Math.random() * (container.offsetHeight - 175))

"pX" ;
div.style.width = width + "px";
div.style.height = width + "px";

+

+




var span = document.createElement ("span");
span.innerHTML = shape.getName () ;
span.style.visibility = "hidden";
div.appendChild (span) ;

div.onmouseover = function() {
// this is the div (the shape) you click on
this.firstElementChild.style.visibility = "visible";

}i

container.appendChild(div) ;

= and PrEVIEW 5% The program works as it did before; you see three shapes (two circles and a square) in
the page and when you mouse over the shapes, theirnames appear inside of them.

Open up the console and type this:

INTERACTIVE SESSION:

> circlel.constructor.prototype
Circle { getCircumference: function, getName: function }

Now the prototype of circle1 contains the two methods, getCircumference() and getName(). Check

circle2 in the same way. Take a look atthe Square.prototype object as well; it contains two methods now.
So whatdid we do?

First, we removed the getCircumference() and getName() methods from the Circle() constructor (we
also removed the getArea() and getName() methods from the Square() constructor). Then we added

these methods to the Circle.prototype object, by setting the same property names (the method names) to
the functions (we treat the Square prototype similarly):

OBSERVE:

Circle.prototype.getCircumference = function() {
return this.radius * Math.PI * 2;

bi

Circle.prototype.getName = function() {
return this.name;

i

Square.prototype.getArea = function() {
return this.size * this.size;

}i

Square.prototype.getName = function () {
return this.name;

}i

The Circle.prototype and Square.prototype objects, like any other object, can have methods. In the
same way that you can add new properties to an object at anytime, because objects are dynamic, we can add
new properties to the Circle.prototype and Square.prototype objects after those prototype objects have
been created. So now, the getCircumferance() and getName() methods are stored only once—in the
Circle.prototype object:



Circle.prototype
getCircumference: function() (...}

getName: function() { ... } \

4 ‘ Now Hie metods
A ave shared, mn He
Circle.prototype
name: "circlel" 5
object.

radius: "100"

name: "circle2"

radius: "200"

The Prototype Chain

The getCircumferance() and getName() methods are now stored in the Circle.prototype object

instead ofin both the circle1 and circle2 objects. Let's see what happens when we try to call one of these
methods:

INTERACTIVE SESSION:

> circlel.getName ()
"circlel"

> circlel.getCircumference ()
628.3185307179587

We called the getName () method on the circle1 object, just like we did before, but circle1 no longer
contains that method. Instead, that method is now in circle1's prototype object. So, how does itwork?

JavaScriptuses the prototype chain to look for a property. If a property is notfound in an object, JavaScript
looks atthat object's prototype to see ifit's there:

Circle.prototype
getCircumference: function() {...} Cﬁ) 1S ge?Name()

. defived in
aniann; Sunckiont) € wo Circle.prototype?
f h Yes. Use His
circlel 399822 & T------ e wethod.

. name: "circlel"

x radius: "100"

i’

(D 1s getName()

name: "circle2" 4 i .
defived in circlel?
radius: "200" No. <0 look int Hhe

prototype.

The getName() method isin the prototype, so that method is called.

Notice that the method in the prototype object still uses this. So how is this being set to the correct object?
After all, the getName () method is now in the prototype object, but it still works for both circle objects.

When you call a method, like circle1.getName(), the object that contains the method being called, in this
case circle1, is used as this, even ifthat method is in the object's prototype. So, when you call
circle1.getName(), this is setto circle1. When you call circle2.getName(), this is setto circle2.

Let's go back to the console and do a litle more testing to help all this sink in (this nextsession is from the



Chrome console, so use Chrome if you want to duplicate it exactly):

INTERACTIVE SESSION:

> Circle
function Circle (name, radius) {
this.name = name;
this.radius = radius;
}
> Circle.prototype
Circle { getCircumference: function, getName: function }
> circlel
Circle { name: "circlel", radius: 100, getCircumference: function, getName: func
tion }
> circlel.constructor
function Circle (name, radius) {
this.name = name;
this.radius = radius;
}
> circlel.constructor.prototype
Circle { getCircumference: function, getName: function }
> circle2.constructor.prototype
Circle { getCircumference: function, getName: function }

First, we check the value of Circle. It's just the constructor function Circle(). Then we check the value of
Circle.prototype. Remember, functions are objects, so they can have properties, just like any other object.
We ask for the value of the prototype property of the Circle() constructor function; the value is a Circle
object containing two properties getCircumferance() and getName(), both of which are methods.

Next, we check the value of circle1. This is a Circle object, because it was constructed with the Circle()
constructor function, and contains four properties: name, radius, getCircumferance() and getName().
But waitl We moved the two methods to the prototype. Why are they listed here in the object? In this case, it's
because the Chrome console is showing the properties in the circle1's prototype object, to demonstrate that
they are accessible as properties. (We'll see soon how to tell whether a property exists in an objector an
object's prototype.)

Finally, we check the prototype of both the circle1 and circle2 objects by first getting the constructor (using
the constructor property of the object, which is Circle()), and then getting the prototype, using the
prototype property of the constructor. We see that the prototype of both these objects is a Circle object.

Try this with the square object.

We are accessing the getName () method of the object that's in the variable shape when we create the
<span> thatgoes inside the <div> representing the shape:

OBSERVE:

var span = document.createElement ("span") ;
span.innerHTML = shape.getName () ;
span.style.visibility = "hidden";
div.appendChild (span) ;

Justlike we saw in the console session, when we access shape.getName(), we're using the method that's
stored in the shape's prototype. It doesn't matter if the shape is circle1, circle2, or square; we find the
getName() in the prototype (Circle.prototype or Square.prototype, depending on which type of object
is stored in the variable shape), and this gets setto the objectin the variable shape).

Since Circle.prototype and Square.prototype are objects, they also have prototypes. The prototype of
Circle.prototype is Object.prototype. Remember that Object() is a built-in constructor function that is
used to create objects, like when you write:



INTERACTIVE SESSION:

> var o = { x: 3 };

undefined

> 0

Object { x: 3 }

> o.constructor

function Object () { [native code] }
> Object.prototype

Object { }

o is an object, and because it's a literal object, its constructoris Object(). The Object() constructor has a
prototype property, which contains o's prototype. Object.prototype looks like an empty Object, but it
only appears that way in the console. In reality, this object contains a bunch of built-in methods for objects,
like toString(). You can't see them because the implementation of Object.prototype is internal to the
browser (thatis, it's not JavaScript you wrote); it's just like the [native code] you see when you try to inspect
Object()).

So let's see what happens when we type this:

INTERACTIVE SESSION:

> circlel.toString();
"[object Object]"

Remember the prototype chain: when you write circle1.toString(), JavaScriptlooks firstin circle1, doesn't
find the toString() method there, so then itlooks in circle1's prototype (Circle.prototype). Ifitdoesn't
find the method there, itlooks in circle1's prototype's prototype (Object.prototype) and finds the method
there. We call this "looking up the prototype chain" to find the method:

| (3) |s toString()
Gbjectprovatipe defined in Object.
tostring: function() {...} | prototype? Yes, s0

Y vse this wmethod.

Circleprototype | 2ssmz of """ ‘

(2D 1s toString()

getCircumference: function() (...} . A .
defived in Circle.

g:trlame: function() { ... } P{‘O?OTYPE? NO,
A <0 look i Hre
circlel 399822 o~ T e prototype.

7 name: "circlel"

r radius: "100"

!

T (D Is toString()

defived i circle1?
radius: "200" No. =0 look in Hte

prototype.

So what's the prototype of the object Object.prototype? It's the only objectin JavaScript that doesn't have
a prototype. Object.prototype is the top of the prototype chain, so the lookup ends there.

Prototypal Inheritance

Every object you create inherits properties from the prototypes all the way up the prototype chain. In our
example, circle1, inherits the methods getName() and getCircumference() from its prototype (because
we specifically added them to the prototype), and circle1 inherits the method toString() from the



Object.prototype.

We call this prototypal inheritance, which means thatif you try to access a property in an object, and that
property doesn'texistin the objectitself, JavaScript looks up the prototype chain to try to find that property.
Most objects either have one or two prototypes. An object will have the prototype, Object.prototype, ifitis
an object literal, or ifit has been created using new Object (). An object will have two prototypes ifitis created
using a constructor function like Circle(), in which case the first prototype up the chain is the
Circle.prototype and the second is one more step up the chain, Object.prototype. Some objects have a
longer chain, but that's fairly rare.

Let's come back to instanceof fora moment. Earlier we talked aboutinstanceof as an operator to
determine which type of object you have. We use itin the example for this lesson to figure out whether shape
is a circle or a square:

OBSERVE:

if (shape instanceof Circle) ({
classes += "circle";
width = shape.radius;

} else if (shape instanceof Square) {
classes += "square";
width = shape.size;

instanceof checks the prototype chain of shape to see ifthere is a Circle.prototype objectora
Square.prototype object. In our example, the shape was constructed by either the Circle() or Square()
constructor functions, so our shape will a have Circle.prototype prototype, ora Square.prototype
prototype, and so we'll find one of these prototypes in the chain.

Remember, Object.prototype is also in the prototype chain, so we could write this:

INTERACTIVE SESSION:

> circlel instanceof Circle
true

> circlel instanceof Object
true

> square instanceof Square
true

> square instanceof Object
true

circle1 is an instance of both a Circle and an Object! The same is true with square; square is an instance of
both a Square and an Object. That makes sense, because all objects are instances of Object, after all.
However, the extra objectin the prototype chain gives you more information about the kind of object you're
dealing with. In this case, it tels you whether the objectis a circle or a square.

If you have experience using an object-oriented language like Java or C++ or C#, profotypal inheritance
probably seems quite strange to you. It certainly is different from classical inheritance, where you create
objects from classes, and create an inheritance hierarchy by extending other objects. For more on prototypal
inheritance and classical inheritance, and a comparison of the two, see the Wikipedia page on Prototype-
based programming.

When are Prototype Objects Created?

You can add properties to prototype objects, like Circle.prototype, after these objects are created, but
when are prototype objects created? A prototype objectis created whenever you define a function. In other
words, every function has a prototype property that contains a prototype object. If you then use that function to
create a new object using new, that new object gets that function's prototype.

So we can add properties to the Circle.prototype and Square.prototype objects as soon as the
Circle() and Square() functions have been defined, even before we use them to create any objects. Look
back at the code and you'll see that we add properties to both prototypes, before we ever define circle1,
circle2,or square.

Try this in the console (make sure you've loaded the proto.html document first):


http://en.wikipedia.org/wiki/Prototype-based_programming

INTERACTIVE SESSION:

> Circle.prototype.x = 400;
400

> Circle.prototype.y = 200;
200

> circlel.x

400

> circlel.y

200

> circle2.x

400

> circle2.y

200

We added two properties to the Circle.prototype object affer we created the circle1 and circle2 objects,
and yetyou can see thatthose properties have values when we query circle1 and circle2. It may seem odd
that properties can appear in objects after they're created, without modifying those objects specifically (by
adding a property directly, like circle1.x = 400;). If you look back at the diagram that shows how prototypes
work though, you'll see thatif you try to access a property in an object and that property doesn't existin the
objectitself, we go up the prototype chain to find it. Even if we add a property to the prototype of an object after
that object is created, that property will be accessible from the object.

hasOwnProperty

An object can inherit properties from its prototype chain, buthow can you find outif a property is in the object
itself, orin one of the object's prototypes? You use the hasOwnProperty() method. Make sure your
proto.html documentis loaded and try this in the console:

INTERACTIVE SESSION:

> circlel.hasOwnProperty ("name")
true

> circlel.hasOwnProperty ("getName")
false

> circlel.hasOwnProperty ("radius")
true

> Circle.prototype.x = 400;

400

> circlel.hasOwnProperty ("x")

false

The property name you pass to hasOwnProperty() mustbe a string (put the property name in quotation
marks). The result of calling circle1.hasOwnProperty("name") is true because the property name, is
defined in the circle1 object. However, the get Name property (a method) is not defined in the circle1 object,
it's defined in circle1's prototype, Circle.prototype, so the result of calling hasOwnProperty() on this
property is false. Similarly, the property radius is defined in circle1, but the property x is not; it's defined in the
Circle.prototype.

Try this:

INTERACTIVE SESSION:

> circlel.hasOwnProperty ("hasOwnProperty") ;

false

> Object.prototype.hasOwnProperty ("hasOwnProperty") ;
true

We called the hasOwnProperty() method on the circle1 object, buthasOwnProperty() isn'tdefined in
either circle1 or Circle.prototype, so it mustbe defined in Object.prototype. Since all objects inherit



this method, you can call hasOwnProperty() on any object, including the Object.prototype object, which
contains this method. That's kind of weird, but you can see why the result of calling
Object.prototype.hasOwnProperty("hasOwnProperty"); is true.

__proto__

You've seen the __proto__ property used in a previous lesson when we inspected an object. You can see it
ifyou look at circle1 in the Chrome console and expand the object by clicking on the little arrow next to it:

¥ circlel
¥Y(Circle {name: "circlel", radiuvs: 108, getCircumference: function, getName: function, x: 480.}

name: “"circlel"

R
ircle

This property refers to the prototype of an object. In this case, our objectis circle1, and its prototype is
Circle.prototype, displayed as Circle inthe __proto__ property. In fact, in the Chrome console, you can
ask for the value of that property, like this:

¥y circlel._ proto__
YCircle {getCircumference: function, getName: function, x: 488, y: 208}
[ : function Circleimame, radius) {
b getCircumference: function () {
» getMame: function () {
®: 488
yi 208

Object

The prototype of circle1 is a Circle object that contains the two methods we added, getName() and
getCircumference(), along with the properties x and y that we added to the prototype later (you might not
see x and y ifyou've reloaded the page). Circle.prototype has a__proto__ property,
Object.prototype,so the __proto__ property of objects allows you to see the prototype chain.

However,do not rely on this property. It's kind of a secret property that browsers implement, butit's not
officially part of the JavaScript standard and could disappear or change atany time. Use itto inspect objects in
the console, but notin your programs!

Setting the Prototype Property to an Object Yourself

So far, we've used the default prototype you get when you create a constructor function, and then added our
own properties and methods to that prototype object for inheritance, but you can actually set the prototype of
a constructor yourselfto an object you've created. Let's see how:



CODE TO TYPE:

<!doctype html>

<html>
<head>
<title> Shapes with Prototypes and Inheritance: Setting the prototype yourself
</title>
<meta charset="utf-8">
<script>
var shape = {
x: 0,
y: 0,
area: 0,
setPosition: function(x, y) {
this.x = x;
this.y = y;
}I
displayInfo: function() {
console.log("Your shape has area " + Math.ceil (this.area) + ", and i
s located at " + this.x + ", " + this.y);

}
}i

function Circle(radius) {
this.radius = radius;
this.computeArea = function() {
this.area = Math.PI * (this.radius * this.radius);
}i
}

function Square (size) {
this.size = size;
this.computeArea = function() {
this.area = this.size * this.size;

}i

Circle.prototype shape;
Square.prototype = shape;

var circle = new Circle (50);
circle.setPosition (100, 100);
circle.computeArea() ;
circle.displayInfo();

var square = new Square (50);
square.setPosition (300, 300);
square.computeArea () ;
square.displayInfo();
</script>

</head>

<body>

</body>

</html>

= Save this in your JAdvJS folder as setProto.html, and PrEVIEW ¥ Open the console, and you see
this:

INTERACTIVE SESSION:

Your shape has area 7854, and is located at 100, 100
Your shape has area 2500, and is located at 300, 300

We defined a literal object, shape, using some properties and methods. We made this a literal object, nota



constructor because we don'twant users to create new shape objects; we wantthem to create circles and
squares.

Then we define two simple constructors, one for Circle objects, and one for Square objects:

OBSERVE:
Circle.prototype = shape;
Square.prototype = shape;

We set the prototype property ofthe Circle constructor object to the shape object, and we do the
same forthe Square constructor object. So now, the prototype object for circle is a shape object

rather than a Circle. As such, circle inherits the methods and properties of the shape object, so we can call

circle.setPosition() and circle.displaylnfo(). square works the same way as well.

In this example, we use the same object as the prototype for both circles and squares: shape. That means the
properties and methods in the prototype object need to make sense for both circles and squares. Before, we

set properties of the prototype by writing Circle.prototype.PROPERTY = PROPERTY VALUE and
Square.prototype.PROPERTY = PROPERTY VALUE because we needed different properties and
methods for circles and squares. Keep this in mind as you are setting up your object prototypes; how you
choose to setup the prototype chain depends on your individual situation and whether you need different
prototypes or the same prototype for your objects.

Take a look at the circle and square objects:

INTERACTIVE SESSION:

> circle

Circle {radius: 50, computeArea: function, x: 100, y: 100, area: 7853.9816339744
83@)

> square

Square {size: 50, computeArea: function, x: 300, y: 300, area: 2500}

> circle.constructor.prototype

Object {}

> square.constructor.prototype

Object {}

> circle instanceof Circle

true

> circle instanceof shape

TypeError: Expecting a function in instanceof check, but got #<Circle>

We see that the constructor for circle is Circle, and for square, it's Square, but now, the
circle.constructor.prototype is shown as Object {} (itwas Circle {} before). That's because the

prototype is the square object, and since the square objectis a literal object, its constructor is Object(), so

its "type" is Object. square works the same way.

In other words, circle is an instance of Circle (because we made circle using the Circle() constructor), and

circle is an instance of Object because shape is a literal object, and its constructor is Object().

Protoypal inheritance and object prototypes are not extremely complicated, yet this topic can be difficult to wrap your head
around, especially if you have experience with class-based languages. You have to put all that knowledge aside and think
differently about objects and inheritance. It all boils down to this: in Javascript, every object has a prototype (except, of course,

Object.prototype), and can inherit properties from the prototype chain.

Make sure you give yourself plenty of time to practice and understand the concepts in this lesson. Experiment with your own
objects and prototypes. Use the console to inspect your objects, and the tools you have in your pocket now to testto make
sure that what you think should happen does. Practice and make sure you know what you're doing in the quizzes and projects.

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.



http://creativecommons.org/licenses/by-sa/3.0/legalcode

Functions

Lesson Objectives

When you complete this lesson, you will be able to:

use basic functions.

e use functions to organize code.

e define functions using function declarations and function expressions.

e compare the differences in using function declarations and function expressions.
e express functions as first class values.

e express functions as anonymous functions.

e pass functions as values to other functions.

e return a function from a function.

e use afunction as an event handler.

e recognize how values are passed to functions using pass-by-value.

e explain what happens when we pass objects to functions.

We've spent the last couple of lessons working with objects; now let's turn our attention to functions.

JavaScript Functions

We've used functions throughout the course, in a variety of different ways. It would be difficult to do any kind of serious
JavaScript without using a function.

What is a Function?

A function is a block of code that's defined once, but can be executed many times. Let's look ata simple
function declaration:

OBSERVE:

function computeArea (radius) {
var area = radius * radius * Math.PI;
return area;

There are a lot of different parts to this function, so let's go through it, steb by step. First, we have the
function keyword. Then, we have the name of the function,computeArea. Then in parentheses, we
have a parameter (radius). The body of the function (the statements that are executed when you call the
function) are defined within curly brackets. In the body of this function, we have two statements: firsta
statement that declares and computes a value for a local variable, area, second areturn statement, that
returns the value of area to the statement that called the function.

Let's call the function now:



CODE TO TYPE:

<!doctype html>
<html>
<head>
<title> Functions </title>
<meta charset="utf-8">
<script>
function computeArea (radius) {
var area = radius * radius * Math.PI;
return area;

}

var circleArea = computeArea(3);
console.log("Area of circle with radius 3: " + circleArea);
</script>
</head>
<body>
</body>
</html>

= Save this in your JAdvJS folder as functions.html, and P™®VI®W S |n the console, you see the area
of the circle with the radius 3:

OBSERVE:

Area of circle with radius 3: 28.274333882308138
>

Let's take a closerlook:

OBSERVE:

function computeArea (radius) {
var area = radius * radius * Math.PI;
return area;

}

var circleArea = computeArea (3);

We call the function using its name (computeArea), passing an argument (3) to the function. The
function's parameter, radius gets the value of the argument. That value is used in the computation. When we
pass an argumentinto a function, we say thatthe argumentis bound to the parameter. So here, the value 3 is
bound to the parameter radius.

The value returned from the function is stored in the variable circle Area.

We can call the function as many times as we want:

CODE TO TYPE:

function computeArea (radius) {
var area = radius * radius * Math.PI;
return area;

}

var circleArea = computeArea (3);

console.log("Area of circle with radius 3: " + circleArea);
circleArea = computeArea(5);
console.log("Area of circle with radius 5: " + circleArea);
circleArea = computeArea(7);
console.log("Area of circle with radius 7: " + circleArea);

= and PreVIEW 5% o the console, you now see the areas of the circles with radii of 5 and 7, along with the



area of the circle with radius 3.

By creating the function computeArea(), we packaged up a little bit of code that computes the area ofa
circle; that can then be reused each time we call the function. In addition, we can customize the code a biteach
time we call the function by passing different values for the argument. We can also get customized values
back from a function if we return a value. In this case, we get the area of the circle that provided the radius we
passed into the function. Note that functions always return a value; if you don't explicitly return one, a function
returns undefined (unless you use it as a constructor, in which case the function returns an object).

So, functions are a way of reusing code. They're also a way of organizing your code. A good programming
practice is to think of functions as a way to put related code together. Forinstance, you might put all code
related to computing the area of a circle together in one function, while you put all code related to computing
the distance between two points together in another function.

When you create a function, you're also creating a scope for executable statements. We'll look atscope in a
lot more detail in the nextlesson, but for now, notice that the parameter radius and the variable area are both
local (thatis, visible only in the body of the function), rather than global (thatis, visible everywhere in your
code). Programmers are often crtical of JavaScript's dependence on global variables, because global
variables are easy to lose and misuse. Functions are good for keeping variables out of the global scope.
This is especially useful when you combine your own code with code from libraries, like jQuery or
Underscore.js. Using functions to keep variables out of the global scope is often called the Module Pattern.
We'll cover that in detail in a later lesson.

Different Ways of Defining a Function

In the code above, we used what's called a function declaration to define the computeArea() function.
Thatis, we declared the function using a statement that begins with the function keyword. It looks like this:

OBSERVE:

function functionName (parameters) {
// body goes here
}

One of the advantages to defining functions using function declarations is that you can place your functions
above or below the code that uses them. Try it:

CODE TO TYPE:
forretior—computefAreatradius—
ar—ares——radci s —t—radius——MathPI;
rettrar—aress
_}.
var circleArea = computeArea (3);
console.log("Area of circle with radius 3: " + circleArea);
circleArea = computeArea (5);
console.log("Area of circle with radius 5: " + circleArea);
circleArea = computeArea(7);
console.log("Area of circle with radius 7: " + circleArea);

function computeArea (radius) {
var area = radius * radius * Math.PI;
return area;

= and PrEVIEW 55 v ur code works exactly the same way as it did before, even though the function
computeArea() is defined below where we are using it.

This works because when the browser loads your page, it goes through all your JavaScript and looks for
function declarations before it begins executing your code. When you define a function at the global level like
we did here, JavaScript adds the function as a property of the global window object, so that the function
definition is visible everywhere in your code. Then, the browser goes back to the top of your JavaScript, and
begins executing the code, top down. So, when the JavaScript interpreter gets to the firstline where you call
computeArea(), that function is defined, so the function call succeeds.



Another way you can create a function is to use a function expression:

CODE TO TYPE:

var circleArea = computeArea (3);

console.log ("Area of circle with radius 3: " + circleArea);
circleArea = computeArea(5);

console.log("Area of circle with radius 5: " + circleArea);
circleArea = computeArea(7);

console.log ("Area of circle with radius 7: " + circleArea);

= 4= 4 s y
TohcTToh—CcomptET rea{raaTaST—

1z % ol &N
oaraorca - raort raoTrosS T

retorr—areas

+

var computeArea = function (radius) {
var area = radius * radius * Math.PI;
return area;

}i

We've replaced the function declaration with a variable declaration: we declare the variable computeArea
and initialize that variable to the resultofa function expression, thatis, a function value. Because
computeArea is a global variable, the end resultis almostthe same: a property named computeArea is

added to the global window object set to the value of the function. However, when you =l and Preview e
preview, you see an error instead of the expected log messages. Why?

JavaScript sees this statement as just a variable declaration and initialization. The value of the variable
happens to be a function, but because we are not using a function declaration, the function is no longer
defined in that first pass through the code; instead, the function is not defined until JavaScript gets to the
variable declaration, which is when it executes the code from the top down. Now that the function is defined
after the statements that try to call the function, we getan error message.

We can fix the error by moving the variable declaration to the top of the code, like this:

CODE TO TYPE:

var computeArea = function(radius) {
var area = radius * radius * Math.PI;
return area;

}i

var circleArea = computeArea (3);

console.log("Area of circle with radius 3: " + circleArea);
circleArea = computeArea(5);
console.log ("Area of circle with radius 5: " + circleArea);
circleArea = computeArea(7);
console.log("Area of circle with radius 7: " + circleArea);
e £ o L =l AY L
ar—eomptteArea——furetiontradiusr—
— oo =* <l X Mot DT
Tr—ares ekt radis Math I

n
reTorir arecay

T

= and PrEVIEW S vour code works again.

We also use function expressions when we define methods in objects:



OBSERVE:

circle = {
radius: 3,
computeArea: function() {
var area = this.radius * this.radius * Math.PI;
return area;

}i

You can see we're using the same syntax to define the method (computeArea() in the circle object) as we
did when we defined itas a global function. The difference is that now the property is visible only in the circle
object; the function is no longer a property of the global window object.

So, when defining global functions, which is better: using a function declaration, or declaring a variable and
initializing it to a function expression?

The main advantage to using function declarations when defining global functions is that you know the
functions will be visible throughout your code so you don't necessarily need to put them all at the top.
However, as long as you don't need all of your functions to be defined at the time your code begins executing,
using a variable declaration and setting the value of the variable to a function expression works justas well.
Some programmers prefer that method of creating functions.

We often create and use functions thatdon't need to be defined in the global window object. Reducing the
number of global variables (including functions!) is always preferable in JavaScript. So next, we'll take a look
at other situations where we can use function expressions rather than function declarations.

Functions as First Class Values

We tend to think of functions as different from other kinds of values, like 3, or even an object, like circle, butin
JavaScript, a function is just another kind of value, a value that you can assign to a variable or an object
property, and even pass to or return from a function.

We say that functions are first class values in JavaScript. A first class value is one thatcan be stored in a
variable, passed to a function, and returned from a function. You can already see that values like numbers,
strings, and booleans are first class; so are objects. If you've been working with JavaScript for a while, you
probably know that functions are first class. Not all languages have first class functions. In some languages,
functions are treated separately and differently than other values.

So what's the deal with first class functions? We'll take a look atthe map() method to answer that
question. Create a new file and add this code:

CODE TO TYPE:

<!doctype html>
<html>
<head>
<title> First Class Functions </title>
<meta charset="utf-8">
<script>
var myArray = [1, 2, 31;
var newArray = myArray.map (function(x) { return x+1; });
console.log (newArray) ;
</script>
</head>
<body>
</body>
</html>

= Save this in your JAdvJSS folder as functions2.html, and P®VIW ¥ Open the console. You see an
array in the console:

OBSERVE:




If you getan error when you try this code, it's because your browser doesn't yet support map().
This is a fairly new method that was added to JavaScript as part of the EMCAScript 5 standard.
Make sure you have the mostrecent version of your browser to try this code, as map() has
broad supportin all the recent versions of browsers.

Z
o
-
[

The map() method is an array method that all arrays inheritfrom the Array prototype. It takes a function and
applies that function to each element of the array (in order). So in our example, map() first applies the function
to myArray[0], then myArray[1], and so on. The array elementis passed as the argument for the parameter
x. map() returns a new array, the same length as the original array, with elements that are the values returned
by each invocation of the function we passed to map(). In our example, the function we pass to map() adds
one to each of the array elements, so the array you get back has items that are one greater than each of the
corresponding items in the original array.

The value that we passed to map() is a function. Unfortuantely, since map() applies the function to the
elements of the array for you (behind the scenes), you don'tgetto see how a function thatis passed as an
argument works. Let's implementour own version of map(), that way, you can see notonly how to pass a
function as an argument, but also how to use itin the function to which you pass it:

CODE TO TYPE:

<!doctype html>
<html>
<head>
<title> First Class Functions </title>
<meta charset="utf-8">
<script>
var myArray = [1, 2, 31;
var newArray = myArray.map (function(x) { return x+1; });
console.log (newArray) ;

function map(a, f) {

var newArray = [];
for (var 1 = 0; i1 < a.length; i++) {
newArray.push (f(a[i]));

}

return newArray;

}

function addOne (x) {
return x+1;

}

var newArray2 = map (myArray, addOne);
console.log (newArray?) ;
</script>
</head>
<body>
</body>
</html>

= and Preview & oreview. In the console, you get the exact same result for our own version of map() as
we did before, the array [2, 3, 4]. Let's go over the code, step by step:



OBSERVE:

function map(a, £f) {
var newArray = [];
for (var i = 0; i < a.length; i++) {
newArray.push (£ (a[i])) ;
}
return newArray;

}

function addOne (x) {
return x+1;

}

var newArray2 = map (myArray, addOne) ;

Our version of map() is a function, nota method, so we need to pass both the array and the function that
will act on the array, to the map() function. That's why our function has two parameters instead ofone.

First, we create a new empty array, newArray. Then we loop over all the elements in the array we passed in,
a, and apply the function f to the array element. Inside map(), we find f. f produces a new value that we then
add to the newArray at the same index as a[i]. When we finish, we return the newArray.

Now let's see how to call this map() function. We need an array and a function to pass to it; we'll reuse
myArray (from the top of the code), and create a function named addOne() to pass. Justlike before,
addOne() is a function that takes one argument, adds one to it, and returns that new value. We call map(),
passing in myArray and addOne as arguments for a and f, then get back a new array with each elementone
greater than myArray.

Passing a function to a function is much like passing any other value to a function, except you have to use it
as a function, and you need to know what kind of arguments the function expects and whatkind of value it
returns (if any). You can write methods and functions like map(), that do some useful work, and can also be
customized by passing in different functions.

Anonymous Functions

When we called the map() method on the array, we used a function expression as the argument that we
passed to map(), whereas in our own implemention of map(), we use a declared function as the argument. It
doesn'treally matter which you use, butif you're not going to use the function addOne() anywhere other than
as an argumentto map(), you might wantto avoid excess clutter and use a function expression instead:



CODE TO TYPE:

<!doctype html>
<html>
<head>
<title> First Class Functions </title>
<meta charset="utf-8">
<script>
var myArray = [1, 2, 31;

console.log (newArray) ;
var newArray 17

for (var i = i < a.length; i++) {
newArray.push(f(alil]));

function map(a, f) {
=
0;

}

return newArray;

£ A <l 14
T C T I o aaaoTe =X\

4 |
TreTToriT =

—

gl lIcwAalla - MMapP Iy Lay, auudJvIirTTy
var newArray?2 = map (myArray, function(x) {
console.log (newArray?2) ;
</script>

</head>
<body>
</body>
</html>

var newArray = myArray.map (function(x) { return x+1;

return x+1;

)

1) ;

= and PrevIew 5 vou see the same resultin the console.

Now, instead of declaring the function addOne(), we pass a function expression to map(). Unlike when we
passed addOne(), this function doesn't have a name. It's known as an anonymous function. Of course, it

has a name inside map(), because it gets bound to the name of the parameter, f.

Anonymous function expressions are justfunction values where the function has no name. This is useful
when we're passing functions to functions, or returning functions from functions, because in both cases the
function gets bound to a name so you can refer to it. When you pass an anonymous function to a function, it
gets bound to the name of the parameter variable; when you return an anonymous function from a function, it
gets stored in the variable you're using to hold the return value. You'll see anonymous functions used

frequently in JavaScript as a shortcut to declare and name a function separately.

Returning a Function from a Function

Notonly can you pass a function to a function, you can return a function from a function. Let's look atan

example:




CODE TO TYPE:

<!doctype html>
<html>
<head>
<title> Returning Functions </title>
<meta charset="utf-8">
<script>
function makeConverterFunction (multiplier, term) {
return function (input) {
var convertedValue = input * multiplier;
convertedValue = convertedValue.toFixed(2);
return convertedvValue + " " + term;

}s

var kilometersToMiles = makeConverterFunction (0.6214, "miles");
console.log("10 km is " + kilometersToMiles (10));

var milesToKilometers = makeConverterFunction(l.62, "km");
console.log("10 miles is " + milesToKilometers(10));
</script>
</head>
<body>
</body>
</html>

=l Save this in your JAdvJS folder as functions3.html, and P™®VI®W % |n the console, you see this
output:

OBSERVE:

10 km is 6.21 miles
10 miles is 16.20 km

Let's go over the code:

OBSERVE:

function makeConverterFunction (multiplier, term) {
return function (input) {
var convertedValue = input * multiplier;
convertedValue = convertedValue.toFixed(2) ;
return convertedValue + " " + term;
};
}
var kilometersToMiles = makeConverterFunction(0.6214, "miles");
console.log("10 km is " + kilometersToMiles (10)) ;

var milesToKilometers = makeConverterFunction(l.62, "km");
console.log("10 miles is " + milesToKilometers(10)) ;

We're using one function, makeConverterFunction(), to create two other functions, kilometersToMiles
and milesToKilometers. makeConverterFunction() takes two arguments: a multiplier value to do a
conversion (itdoesn't matter what kind of conversion, as long as it can be done by multiplying one value by
another), and a string representing the term of measurement we expect back from the function we generate.

makeConverterFunction() returns a function. The function itreturns takes one argument, input, and uses
thatargumentin a computation with the parameters of makeConverterFunction().
makeConverterFunction() knows nothing about the kind of conversion we wantto do. It knows knows
thatit's generating a new function that multiplies input by multiplier, uses toFixed() to make sure the
resulting number has a fractional partof at mosttwo numbers, and then returns a string made by combining
the number with the term passed into makeConverterFunction().

We can use makeConverterFunction() to make functions thatdo a specific kind of conversion, passing in



a value for multiplier and a string for term. So to create a function that converts kilometers to miles
(kilometersToMiles), we pass in a multiplier of 0.6214, and "miles," and get back a function that can do
this conversion when we call it and pass in the number of kilometers. Similarly, we can create a function to
convert miles to kilometers (milesToKilometers) by passing in 1.62 for the multiplier, and "km" for
the term.

Review this code carefully to make sure you understand it. The makeConverterFunction() returns a
function that uses both the parameters of makeConverterFunction(), as well as the (yetto be bound)
parameter, input. Once makeConverterFunction() creates its function and returns it, the parameters
multiplier and term go away, yetsomehow, the functions kilometersToMiles() and
milesToKilometers() "remember" those values. The secret to this somewhat magical ability to remember
is the closure—we'll come back to thatin a later lesson.

Fornow, just be aware that the arguments you pass into makeConverterFunction() are used (and
remembered) by the function that makeConverterFunction() creates. So in kilometersToMiles(), the
value of multiplieris 0.6214 and the value ofterm is "miles," while in milesToKilometers(), the value of
multiplieris 1.62, and the value ofterm is "km."

Functions as Callbacks

Atthe heart of just about every JavaScript program are events. When you write a web application, you use
JavaScript to add interactivity to your page, which means your program needs to respond to events generated
by the browser, and events generated by the user.

In JavaScript, we use functions to handle events. We often refer to event handlers as callbacks because
when an event happens, we "call back" to a function to handle that event. Callbacks aren't always about
browser and user events, but often they are.

You've probably used functions to handle events like the page load and button click events. If you've used
Ajax (also known as XHR) or Geolocation in your JavaScript programs, you're probably familiar with
functions used as callbacks. For instance, with Ajax, you provide a function to "call back" when
XMLHttpRequest has loaded data from a file. With Geolocation, you provide a function to "call back™ when the
browser has located your position. Let's take a quick look at a basic Geolocation example so you can see
how we use a function as a callback:

CODE TO TYPE:

<!doctype html>
<html>
<head>
<title> Functions as callbacks </title>
<meta charset="utf-8">
<script>
window.onload = function() {
if (navigator.geolocation) {
navigator.geolocation.getCurrentPosition (getLocation) ;
}
else {
console.log("Sorry, no Geolocation support!");
return;
}
}i

function getLocation(position) {
var latitude = position.coords.latitude;
var longitude = position.coords.longitude;
var div = document.getElementById("container");

div.innerHTML = "You are at lat: " + latitude + ", long: " + longitude;
}
</script>

</head>

<body>

<div id="container"></div>

</body>

</html>

= Save this in your JAdvJS folder as functions4.html, and PreVIEW % vour o cation will be displayed



in the browserin a moment.

Note All modern browsers support Geolocation, but there are many reasons Geolocation can fail. If
' you're not getting a location, don't worry, justfollow along.

We use functions as callbacks in two places in this example: first, we use an anonymous function as the load
eventhandler, by setting the window.onload property to the function. That means when the browser triggers
the "load" event—thatis, when the page is fully loaded—the function that's been stored in the
window.onload property is called. This happens asynchronously. You can't anticipate when the page is
loaded; all you know is that when the browser has loaded the page, it will call this function.

Second, we use the getLocation() function as a callback for the Geolocation getCurrentPosition()
method. Again, this is an event handler: a function that is called when a specific event happens—in this case,
when the Geolocation object has found your position. This callback happens asynchronously: you can't
anticipate how long it's going to take your browser to find your location, you just know that when it does, the
browser will call your function back with your position.

Unlike with window.onlo ad, we specify this callback by passing the getLocation() function to the
getCurrentPosition() method. The getCurrentPosition() method calls getLocation() (behind the
scenes) as soon as the browser has retrieved your location. In getLocation() we have a valid position, so
we add the position, as a latitude and longitude, to the web page. (If you get an error retrieving your position,
then getLocation() won'tbe called;it's only called if the browser can find you).

Calling Functions: Pass-by-Value

In this lesson we've seen quite a few examples of functions, and we've passed a variety of different values to
functions, including numbers, strings, and other functions. Let's take a closer look at what happens when we
pass arguments to functions. Create a new file and add this code:

CODE TO TYPE:

<!doctype html>
<html>
<head>
<title> Functions: Pass by value </title>
<meta charset="utf-8">
<script>
function changeNum (num) {
num = 3;
}
var myNum = 10;
changeNum (myNum) ;
console.log (myNum) ;
</script>
</head>
<body>
</body>
</html>

= Save this in your /AdvJS folder as functions5.html, and PrEVIEW % Open the console.

You see the value 10. Is that what you expected? When you pass myNum to the function changeNum(), the
parameter num gets a copy of the value of myNum. When you change num to 3, you don't change the value
ofmyNum.

This process of copying a value into a parameter when you pass an argumentto a function is called pass-
by-value.

Now add this code to the program:



CODE TO TYPE:

<!doctype html>

<html>

<head>
<title> Functions: Pass by value </title>
<meta charset="utf-8">
<script>

function changeNum (num)
num = 3;

{

}

var myNum 10;
changeNum (myNum) ;
console.log (myNum) ;

function changeObj (obj) {
obj.x = 3;
obj.z = 10;

}

var foo

}i
console.log ("Before calling changeObj,
console.log(foo) ;

foo is:

changeOb7j (foo) ;
console.log("After calling changeObj,
console.log (foo);
</script>

</head>

<body>

</body>

</html>

")

foo is:

= and Preview ¥ voy see this output (or something similar; ours is from Chrome):

OBSERVE:

Before calling changeObj, foo is:
Object {x: 0, y: 1}

After calling changeObj, foo is:

Object {(x: 3, y: 1, z: 10}

In the new code, we create an object foo, which has two properties: foo.x and foo.y. We pass the object
foo to the function changeObj(), and the objectis bound to the parameter obj. The function sets the value
ofthe property obj.x to 3, and the value of the property obj.z to 10.

After we call changeObj(), passing foo to the function, the properties of foo are different. JavaScriptis
pass-by-value, which means that function parameters geta copy of the value of the arguments we pass to the
function. So how are the properties of foo being changed?

The value in the variable fo o is a reference—thatis, a memory location, a pointer to the data in the object.
When we pass foo to changeObj(), we pass a copy of the memory location, not a copy of the data in the

memory location. So obj (the param

eter) is also a memory location, one that points to the same place as

foo.When you change property values, or add new properties to obj, you are making those changes and
additions to foo, because they are pointing to the same object.



foo 622498 * 1~
x: 0

The value in ob) P N It still points +o Hie
IS a4 COPV 041 the Same data as 'PDO"
Value in foo. |

function changeObj (obj) {
obj.x = 3;
obj.z 10 ;\\ <0, wlen we cf/mmqe -['he
} property Valves of ob), we ave
changing the values of foo.

foo 622498 "1~
x: 3

vre dl

Z=ll0

This concept of pass-by-value can be a little tricky at first, so spend some time looking over this code to
make sure you understand it. Experiment on your own. Try passing an array to a function that changes the

array. Remember that arrays are objects too. Do you get the results you expect?

Return

Before we finish up this lesson, let's talk about the return statement. return is used to return a value from a
function. However, if you don't have a return statement, the function still returns a value: undefined (unless

you're using the function as a constructor, in which case itreturns an object).

You might think that return would always be the last statementin the body of your function, butitdoesn't have
to be. You can use return to exit from a function early. Create a new file and add the code below, so we can

see how that works:



CODE TO TYPE:

<!doctype html>
<html>
<head>
<title> Functions </title>
<meta charset="utf-8">
<script>
function getWeather (temp) {
if (temp >= 80) {
return "It's hot!";

} else if (temp >= 50 && temp < 80) {
return "It's nice!";
console.log("test");

} else {
return "It's cold!";

}
var returnValue = getWeather(71);
console.log(returnValue) ;
</script>

</head>

<body>

</body>

</html>

= Save this in your /AdvJ S folder as functions6.html, and FrEVIEW S n the console, you see the
message "lIt's nice," butyou won't see the message "test." We return a string from the getWeather()
function, and then display that value in the console. So returnValue holds the value returned from the
function. Notice that we've got three return statements in the function now. As soon as any one ofthem is
executed, the function returns, so any code that follows the return statement will be ignored. When we return
the string, "It's nice," the function execution stops, so we never see the message "test" in the console.

When you return a value from a function, write your return statement with care. Change your code just a tiny bit

as shown:

CODE TO TYPE:

<!doctype html>
<html>
<head>
<title> Functions </title>
<meta charset="utf-8">
<script>
function getWeather (temp) {
if (temp >= 80) {
return "It's hot!";
} else if (temp >= 50 && temp < 80) {

i1

i L :
TeTTOLTT TC T

return
"It's nice!";
1 1 10 4= 11
1T . . L g\ T C T r

} else {
return "It's cold!";

7

}
var returnValue = getWeather (71);
console.log(returnvValue) ;
</script>

</head>

<body>

</body>

</html>

= and PrEVIEW S Now all you see in the console is undefined; you don't see the message, "It's nice!"



Usually you can add whitespace in a JavaScript program without affecting the way the program executes, but
in this case, the function is no longer working as we expect.

This is an example of "automatic semicolon insertion" and it's a holdover from when people used to write
JavaScript without using semicolons. JavaScript reads the above code like this:

OBSERVE:

return;
"It's nice!";

JavaScript thinks you forgota semicolon at the end of the return statement, so it "helpfully” inserts one
foryou,and in the process breaks your code. There is no error because "It's nice" is a valid expression and
statement (itdoesn'tdo a whole lot, butit's perfectly valid). So, your function returns when it hits the statement
return; and, because you're returning with no value, the value returned from the function is undefined. The
statement"It's nice™; never gets executed (and even ifitdid, as a standalone statement, it wouldn't do
anything visible).

The return statementis notthe only situation where JavaScript does automatic semicolon insertion, butit's
acommon cause of errors, so watch outforit! You can read more about automatic semicolon insertion in the
JavaScript specification (5.1).

Take a break to rest your brain, and then tackle the quizzes and projects to digestall of this new information.

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.



http://www.ecma-international.org/ecma-262/5.1/#sec-7.9
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Scope

Lesson Objectives

When you complete this lesson, you will be able to:

use local scope and global scope.

use functions to create local scope.

recognize variables that are hoisted within a function.

use nested functions.

explore lexical scoping within nested functions.

use a scope chain to recognize how variables are resolved.

use the Chrome Developer Tools to inspect the scope chain.

Scope

To truly understand functions, and JavaScriptin general, you need to understand scope. JavaScript has two kinds of

scope: global, meaning a variable is visible everywhere, and local, meaning the variable is visible only within a

function. You're mostlikely using JavaScriptin the browser, so you know that the global scope comes setup with an
object, window, which exposes all the browser-related JavaScript features you need to create web applications. In this

lesson, we'll dive into scope; we'll take another look at how variables and functions work from the perspective of

scope, JavaScript's scoping rules, and how to plan your code to avoid certain "gotchas." We'll also use Chrome's

web developertools to inspect the function call stack and get a first-hand look at scope in action. Let's get going!

Variable Scope

We'll start by looking at the global scope. Here are three ways to create a global variable:

CODE TO TYPE:

<!doctype html>
<html>
<head>
<title> Global Scope </title>
<meta charset="utf-8">
<script>
var globalScopel = "Global";

//

// not using var to define a new variable is bad
//

globalScope2 = "Global";

form!

function f£() {
globalScope3
}
</script>
</head>
<body>
</body>
</html>

"Global";

= Save this in your /AdvJS folder as globalScope.html, and Freview o

which of the variables is defined globally:

.Open the console, and see




INTERACTIVE SESSION:

> globalScopel

"Global"

> globalScope2

"Global"

> globalScope3

ReferenceError: globalScope3 is not defined

Both globalScope1 and globalScope?2 are global variables, so you can inspect them in the console, but
we haven't called the function f(), so globalScope3 hasn't yet been created. Call f() and then check again:

INTERACTIVE SESSION:

> f()
undefined

> globalScope3
"Global"

Now, globalScope3 is defined, and itis a global variable. Why is globalScope 3 a global variable? After all,
we defined itinside the function f(). Well, notice that we did not use var to declare the variable. When you use
a new variable in a function without using the keyword var, JavaScript automatically creates a new global
variable for you. This can be a problem if you're not expecting it! For instance, you could accidentally overwrite
the value of an existing global variable if you use the same name and forget to write var. So, avoid using new
variable names within a function to create global variables. In general, always declare your variables with var,
whether they are global or local.

The term global scope describes the visibility of your variables. Global variables are visible everywhere in
your JavaScript code, including in external files if you are loading external scripts. So smart JavaScript
programmers fry to avoid global variables except when they're absolutely necessary.

Global variables are added to the global object, which is the window objectin all current browsers. Type
window in the console:

INTERACTIVE SESSION:

> window
Window {top: Window, window: Window, location: Location, external: Object, chrom
e: Object}

You see the window object and its many methods and properties. In Chrome, Safari, and Firefox, if you click
the arrow next to the objectin the console, you'll see some familiar methods and properties. Scroll down to
the properties starting with lower case "g" and look for the global variables you defined in the code above.
You see all three properties there. Scroll back up to the "f's and you see the function f() we defined.

Whenever you define a global variable, it's added to the global object as a property.

When you use a global variable or method, whether it's one you define yourself (like the global variables we
created above) or properties of the global object (like alert(), console.log(), ordocument, the document
object), you don't have to specify window.alert(), orwindow.globalScope1; you can justtype the name,
forinstance, alert() or globalScope1. The global objectis the default scope for all variables.

INTERACTIVE SESSION:

> window.globalScopel
"Global"

> globalScopel
"Global"

Both work, so we usually just leave off the "window" part.



Function Scope

The other kind of scope in JavaScriptis local scope. A local scope is created whenever you call a function:

CODE TO TYPE:

<!doctype html>

<html>

<head>
<title> Local Scope </title>
<meta charset="utf-8">

<script>
var message = "Loading...";
window.onload = function() {
var message = "Done loading";

var div = document.getElementById("container");
div.innerHTML = message;
}
</script>
</head>
<body>
<div id="container"></div>
</body>
</html>

= Save this in your JAdvJS folder as localScope.html, and P™VIeW & you see the message "Done
loading" in the web page. Open the console and try to access the variables:

INTERACTIVE SESSION:

> message

"Loading..."

> div

ReferenceError: div is not defined

We can access the globally defined variable message, but not the locally defined variables message and
div. Plus, we've gottwo variables with the same name. The message that's defined inside the (anonymous)
function is a local variable, while the message defined above the function is a global variable. Similarly, the
variable div is a local variable.

Inside the function, we setthe innerHT ML property of the div object to the value of the /ocal message
variable (the one thatis defined in the function) because the local message variable shadows the global
message variable. If you use a local variable with the same name as a global variable, the local variable is
used when you refer to it within the same function.

Parameters also have local scope. Let's change the code a bit so we can see how this works:



CODE TO TYPE:

var message = "Loading...";

window.onload = function() {
var message = "Done loading";

ol ] i A Tn LTl /N ] i1}
o OT = COCUMCIIC . gC COTCIICITCD Y T\ mTTcaractT Ty

e rHPME—messages
updateMessage (message) ;
}
function updateMessage (msg) {
console.log(message) ;
console.log (msqg) ;
var div = document.getElementById("container");
div.innerHTML = msg;

= and PrEVIEWSE | the console, you see two messages:

OBSERVE:

Loading...
Done loading

The first parameteris from the line console.log(message). The value in the global variable message is
displayed, not the value defined in the window.onload function, even though we're calling
updateMessage() from that function. Also, we're passing the value of the local variable message from that
function to updateMessage(), but giving ita new name as a parameter, msg. Remember that when you call
a function and pass an argument, the parameter of the function gets a copy of the argument value, so msg
gets a copy of the string "Done loading." That's the second message you see in the console, and it's also the
message you see in the <div> in the web page.

msg is a local variable; it's local to the function updateMessage(). Try to display the value of msg in the

console:
INTERACTIVE SESSION:
> msg
ReferenceError: msg is not defined

You can'taccess a local variable outside the function in which itis defined.

You might be curious about how variable shadowing works. And if there's a global objectinto which all the
global variables are stashed, is there also a local object for local variables? We'll come back to these topics
shortly, when we talk about scope chains.

Hoisting

We've talked about the two kinds of scope that JavaScript has: global and local. Let's take a closer look at
local scope, because sometimes local scope behaves in ways you might not expect, particularly if you have
blocks of code in a function, and you're defining new variables within those blocks. By "block," we mean
perhaps aloop or an if statement, where the "block" consists of all the statements inside the body ofthe loop
or if statement (everything between the curly brackets {}):



CODE TO TYPE:

<!doctype html>
<html>
<head>
<title> Hoisting </title>
<meta charset="utf-8">
<script>
var icecream = ["vanilla", "chocolate", "strawberry"];
function init () {
var flavorButton = document.getElementById("getFlavorButton");
flavorButton.onclick = checkFlavor;
}
function checkFlavor () {
console.log(flavor) ;
if (icecream.length > 0) {
var div = document.getElementById("container");
var flavor = document.getElementById("flavor") .value;
if (flavor) {
for (var 1 = 0; 1 < icecream.length; i++) {

if (icecream[i] == flavor) {
var found = true;
div.innerHTML = "We have " + flavor;
break;

}
if (!found) {
div.innerHTML = "Sorry, we don't have " + flavor;

}

console.log(flavor) ;

}

window.onload = init;

</script>
</head>
<body>
<div id="container">Enter a flavor of ice cream you'd like: </div>
<form>

<input type="text" id="flavor">

<input type="button" id="getFlavorButton" value="Check flavor">
</form>
</body>
</html>

= Save this in your JAdvJS folder as hoisting.html, and PT®VI®W * vou see a message asking you to
enter an ice cream flavor, a form input to enter the flavor, and a button to submit the form.

Before you submit the form, take a close look atthe code and make sure you understand how it works:



OBSERVE:

var icecream = ["vanilla", "chocolate", "strawberry"];
function init () {
var flavorButton = document.getElementById("getFlavorButton") ;
flavorButton.onclick = checkFlavor;
}
function checkFlavor() {
console.log(flavor) ;
if (icecream.length > 0) {
var div = document.getElementById('"container") ;
var flavor = document.getElementById("flavor") .value;
if (flavor) {
for (var i = 0; i < icecream.length; i++) {

if (icecream[i] == flavor) {
var found = true;
div.innerHTML = "We have " + flavor;
break;

}
}
if ('found) {
div.innerHTML = "Sorry, we don't have " + flavor;
}
}
}

console.log(flavor) ;

We setup a click handler forthe form button that will call the checkFlavor() function when you
click the button. In the checkFlavor() function we use a variable named flavor to hold the value you'll enter
into the form. Look at where that variable is defined in the function; we display its value in the console twice:
once at the top of the function, before the flavor variable is defined, and once at the end of the function, just
before the function finishes, and outside the if block in which flavor is defined.

What do you think you'll see in the console when you run this code by entering an ice cream flavor and
clicking the button?

Okay, make sure your console is open, and enter "vanilla." You see the message "We have vanilla" in the
page. Check out the values displayed in the console.

OBSERVE:

undefined
vanilla

The firstconsole.log(flavor) displays undefined, while the second console.log(flavor) displays
vanilla.

You might have expected to getan error for the first console.log(flavor) call, because the flavor variable
hasn't been defined yet, and usually when you try to access a variable thatisn't defined, you get a Reference
Error. (If you need to refresh your memory about Reference Errors, just go back to the console and enter the
name of a variable that's not defined by this program, like x.)

Why don't we get a Reference Error when we try to access flavor before it's been defined, or after the block
that encloses the definition of flavor has ended? The answer is: hoisting. Hoisting is an informal name for a
quirky behavior in JavaScript: no matter where you define a variable within a function, the variable declaration
is moved (or "hoisted") up to the top of the function. Read that again. Notice that only the declaration is
moved; not the initialization. So, it's as if you'd written the checkFlavor() function like this:



OBSERVE:

function checkFlavor () {
var flavor;
console.log(flavor) ;
if (icecream.length > 0) {
var div = document.getElementById ("container") ;
var—flavor = document.getElementById("flavor") .value;
if (flavor) {

for (var i = 0; i < icecream.length; i++) {
if (icecream[i] == flavor) {
var found = true;
div.innerHTML = "We have " + flavor;
break;

}

if (!found) {
div.innerHTML = "Sorry, we don't have " + flavor;

}
}

console.log(flavor) ;

flavor is declared when we access itin the firstconsole.log(flavor);. It's declared, butit's notinitialized, so
the value of flavoris undefined. That's why you see undefined as the result of the first
console.log(flavor);. Then, we setits value to the value you type into the form, and thatremains the value
when we reach the second console.log(flavor);.

Hoisting take place for all the local variables in checkFlavor(). Can you find the other variables in the
function that are hoisted?

If you have experience with another language, perhaps Java or C#, this hoisting behavior may surprise you,
because many languages have a third type of scope: block scope. In block scope, a variable like flavor
would be defined only within the block where it's declared and initialized, and not outside that block. In that
case, you would get a reference error if you tried to access flavor in the two console.log(flavor);
statements. However, JavaScript does not have block scope. It only has global and local scope. All local
variables are visible everywhere within a function, even if they are declared and initialized within a block.

As of this writing, JavaScript does not have block scope, butit will probably be added atsome

Note point.

Nested Functions

Sometimes in JavaScript, we nest functions inside other functions. Usually these are "helper" functions that
are used only by the function enclosing the nested functions. Let's take a look at an example, and then talk
about how scope works for nested functions.



CODE TO TYPE:

<!doctype html>
<html>
<head>
<title> Nested Functions </title>
<meta charset="utf-8">
<style>
.red {
background-color: red;
}
.blue {
background-color: lightblue;
}
.pink {
background-color: pink;

}

</style>
<script>
window.onload = function() {
var thelId = "list";

findElement (theld) ;
}

function findElement (id) {

var color = "red";
var el = document.getElementById(id) ;
if (el) {

changeAllBlueChildren (el) ;
}

function changeAllBlueChildren(el) {
for (var i = 0; 1 < el.childElementCount; i++) {
var child = el.children[i];

if (child.tagName.toLowerCase () == "1i") {
var theClass = child.getAttribute ("class");
if (theClass == "blue") {

child.setAttribute ("class", color);

}
}
</script>
</head>
<body>
<ul id="list">
<li class="red">I'm already red</1li>
<li class="blue">I'm blue</li>
<li class="blue">I'm blue too</li>
<1li class="pink">And I'm pink</1li>
</ul>
</body>
</html>

= Save this in your JAdvJS folder as nested.html, and Pr®VI®W 2 The first three items in the list are red,
and the lastone is pink. In the HTML and CSS, the second and third items are in the "blue" class, so normally
the background of those items would be "lightblue," but we changed that using the code.



@00 | ] Functions: Scope Chains x

« CHNlD /Adv)S/nested html

And I'm pink

In the code, you can also see that we have a window.onload function thatis called when the page is loaded;
that function calls findElement(), which finds the element with the id "list," and calls
changeAlIBlueChildren(). changeAllBlueChildren() iterates through all of the child elements of the list
(all the <li> elements), and if the class of the elementis "blue," changeAllBlueChildren() changes the class
to "red."

OBSERVE:

function findElement (id) ({
var color = "red";
var el = document.getElementById(id) ;
if (el) {
changeAllBlueChildren (el) ;
}

function changeAllBlueChildren (el) {
for (var i = 0; i < el.childElementCount; i++) {
var child = el.children|[i];

if (child.tagName.tolLowerCase() == "1li") {
var theClass = child.getAttribute("class") ;
if (theClass == "blue") {

child.setAttribute("class", color);

}

Here we're exploring nested functions. The findElement () function has a nested function in it: a function
defined within a function. Unlike global functions like findElement() and window.onload function,
changeAlIBlueChildren() is a local function, visible only within findElement(). If you try to access the
function in the console (or try to call it from outside of the findElement () function), you'll get a reference
error:

INTERACTIVE SESSION:

> changeAllBlueChildren
ReferenceError: changeAllBlueChildren is not defined

Essentially, changeAllBlueChildren() is hidden except within findElement (). (We'll come back to the
concept of data hiding later in the course).



We're using a function declaration to declare the change AllIBlue Children() function. What do you think
would happen if we changed the code to declare the function using a function expression instead?

CODE TO TYPE:

= s I 1101 Pk N X | kil L
TOncCTTroir Ccranyg TrorgecirrrareirteTy T

var changeAllBlueChildren = function(el) {

}

= and Preview ik

OBSERVE:

> Uncaught TypeError: undefined is not a function

Justlike other local variables in a function, the change AllBlue Children variable is hoisted. So now,
changeAllBlueChildren is implicitly declared at the top of the function butis undefined (just like all the other
local variables). Since we don't assign the function expression to the variable until after we call the function,
we get an error. We're trying to call the variable change AllBlue Children while it's still undefined, and before
itis assigned the function expression.

Go ahead and change your code back to use a function declaration instead. The function declaration is also
defined after we call the function, but, unlike a function defined with a function expression, a nested function
declaration is visible throughout the function in which it's nested. This is similar to the way functions declared
at the global level work: you can put them at the bottom of your code, but access them anywhere in your code.
Here, we've placed the changeAllBlue Children function declaration at the bottom of the findElement()
function, but now (using a function declaration rather than a function expression) it's visible (and defined!)
throughout the findElement () function.

Lexical Scoping

Now let's take a look at what happens to the scope of variables when you have nested functions. Remember
earlier we said local variables are visible throughout the function in which they are declared. Let's see where
the variables in this program are visible.

OBSERVE:

window.onload = function() {
var thelId = "list";
findElement (theIld) ;

}

function findElement (id) ({

var color = "red";
var el = document.getElementById(id) ;
if (el) {

changeAllBlueChildren (el) ;
}

function changeAllBlueChildren (el) {
for (var i = 0; i < el.childElementCount; i++) {
var child = el.children[i];

if (child.tagName.toLowerCase () == "1i") {
var theClass = child.getAttribute ("class");
if (theClass == "blue") {

child.setAttribute ("class", color);

}

We'll start with theld. This variable is defined in the window.onload function, and so is notvisible globally
orin findElement(). However, we pass itto findElement(), which gets a copy ofits value, in the parameter



variable id. id is local to findElement(), so we can access it anywhere in that function, but again, not
globally. Similarly, color and el are local variables, visible anywhere in findElement().

Next, look at changeAllBlueChildren(). We have a parameter, el, and several local variables, including i,
child, and theClass, all of which are local to changeAllBlueChildren().

There's some interesting stuff happening here. We're using the variable color inside
changeAlIBlueChildren(), even though color is notdefined in changeAllBlueChildren(), and it's nota
global variable. This is possible because changeAllBlue Children() is nested within findElement(),
color is visible inside the nested function, so we can access itjustas ifitwere a local (or global) variable
inside changeAlIBlueChildren(). This is known as lexical scoping. That means, when you are using a
variable, like color, you figure out the value of the variable by first looking in the local scope (thatis, in
changeAlIBlueChildren()), and then in the next outer scope. Typically, the next outer scope is the global
scope, butin this case, because changeAllBlueChildren() is nested within another function, the next outer
scope is findElement(). That's where color is defined, so that's the value we use in
changeAllBlueChildren().

Take a look at el. We have the parameter, el, which is local to change AllBlue Children(), and we have the
variable el in findElement () which is visible throughout findElement(), including within
changeAlIBlueChildren()! So which value do we use? Well, remember that the el defined within
changeAlIBlueChildren() will shadow the el in findElement (). How? Because of lexical scoping. When
we use el in changeAllBlueChildren(), we firstlook for itin the local scope, and we find its value there, so
that's the one we use.

If you don'tfind a variable within a local scope atall, then you look in the global scope. Ifit's not there, you get
a Reference Error.

@élobal scope
\
| —| window.onload |__—theId is local ']'D window .onload

Local scope —|

and ouly visible i that function.

|

theId

| findElement creates a wiole vew
findEienent scope. Local Vaviables id, color

i | and el ave visible Houghout
e tre function, including in

cotor | changeAllBlueChildren.

Nested ——1 | changeAllBlueChildren 1
local scope

Local scope —]

i

| — changeAllBlueChildren aveates
yet avother scope. All local
vavidbles declared wn this
Punction are visible ouly within
changeAllBlueChildren.

. The local vaviable el shadows the
Easciass el Variable in findElement.

colox

,m

— The Vaviable color is vot Jocal
o changeAllBluecChildren; it is
local to findElement, but visible
M changeAllBlueChildren.

Well, we've talked about how functions are good for organizing bits of code. That's what we're doing here. We
put all the code related to changing the blue children of an elementto red in this function, which makes the
code easier to read and understand, and also creates a chunk of code that's easy to reuse. In this case, we
only call the changeAlIBlueChildren() once, but you can imagine that we might end up calling it multiple



times. By nesting the function inside findElement (), we keep ithidden from other code thatdoesn't need to
know aboutit, and organize our code so that the related bits are together. If we wanted to use
changeAlIBlueChildren() somewhere else in our code, we'd have to move itoutoffindElement() so it
would be accessible to other code to call.

There is a downside to nested functions: a nested function like change AllIBlue Children() has to be
recreated every time you call the function in which it's nested, while functions defined at the global level are
created only once and stick around for the duration of your program. In our case, that's okay; we call
findElement() justonce, so we're creating changeAllBlueChildren() justonce. In small to medium-sized
programs, you might find that the organizational benefit of nested functions outweighs the performance hit.
However, if you're building an application that needs to be as fastas possible, you'll want to avoid nested
functions.

Scope Chains

You know that JavaScript has two kinds of scope: global and local. You also know that scope works
"lexically." When you are looking to resolve a variable (determine what its value is when you use it), first you
look in the local scope of the function you're in, if you don't find it, you look in the surrounding scope, and so
on, until you get to the global scope. If you don't find the variable in any of those places, you getan error.

The way scope works behind the scenes is through a scope chain. A scope chain is created in two stages: the
first stage is when the function is defined, and the second, when the function executes. When you define a
function, the initial scope chain is created. You can think of the scope chain as a list of pointers from the
function to the scopes that surround the function at define time. These scopes are in order, so that the scope
atthe top of the chain (the first position) is the scope immediately surrounding the function (usually the global
scope, unless the function is nested), and subsequent scopes are further out (like the layers in the previous
diagram).

In the second stage, when the function executes, an activation objectis created. This object represents the
state of the function as it executes, so it contains all the local variables, as well as this (which is usually the
global object, window). The activation objectis added to the top (the first position) of the scope chain. When
a function is executing and itcomes across a variable and needs to resolve that variable to know what the
value is, the function starts at the first position in the scope chain, which is the activation object. If the function
finds the variable there (thatis, the variable is a local variable to the function), it stops there, and uses that
value. If the function doesn't find the variable there, itlooks in the next position in the scope chain, and so on.
The function continues down the chain until it finds a scope that contains the variable. If it gets to the end—the
global scope is always the last stop in the chain—and hasn't found the variable, then we get a Reference
Error.

Let's take a look atthe scope chains for the functions in our specific example. The window.onload function
is defined at the top level, so its define-time scope chain is the global object. When window.onload is called
(by the browser, when the page is loaded), an activation objectis added to the top of the scope chain. So,
when we look for the value of the variable theld, we find it in the activation object, and don't have to look any
further down the chain.



When we define Hhe window.onload function:

When we execute Hie window.onload function:

window.onload > 6|0b Al scope “The scope i
[Scope] * window [Object] IS 9€+ vy wihen we
"""""""""""""""""" 1 oW,

document [Object] al{?—Prlﬂe " -PUI:‘!C‘i’rO

e " e e When we vse a Variable,
_[_S‘_:OI_’?] __________ ) this window like theId, in ow code,
[Scope] . theld RSty Z;ogzof_ﬁma;ih:ﬁ}rfgwe
I
Activation Object,
and it we don't find
> Global scope \ i+ Hheve, we look at
| window  lobject) | Hhe St LD
document [Object] ccoped r1—P we dont
Pind it theve, we get

AN vV OV

Similarly, findElement () is globally defined, so atdefine time, the global objectis added to the scope chain,
and at execution time—when we call the function—the activation objectis added to the chain. That's where we
look firstto find the values of the variables used in the function, like id and el, as well as document.
document is notdefined in the activation object, so we look in the global object and find document there.



Whent we defive e FindElement function:

findElement > &lobal scope
[Scope] < window [Object]
document [Object]
When we execute Hie FindElement function:
findElement > Activation Object L The stope chain
s : - - Lo findElement is
---_?.o.r.’? ................ EP.J:.S ............ Y_Jf_c!?i _____ similar. Notice that
[Scope] . id "list" Hre Activation Objéﬁ’
[P ncludes a veference
isadsininieiainlsaieisiatnisniniotoisisiuistoiiiniata +o Hae -Pumc-l"iow
o1 . [lopiectl / changeAllBlueChildren.
changeAllBlueChildren
[Function]
> &lobal scope
window [Object]
document [Object]

When we call findElement(), changeAllBlueChildren() is defined. At define time, we have an extra scope
objectin the chain: the findElement() scope object. Because changeAllBlueChildren() is defined within
the findElement() function, it's defined in the findElement () function's scope. The extra scope object
contains any variables that are referenced from the nested function. In this case, that's justthe color variable.
When we call changeAllBlueChildren(), its activation objectis added to the chain. When we look for the
variable color, first we look in the activation object, but since we don't find it there, we look in the
findElement() scope, find it, and o we stop looking.



When we defivie the changeplBlueChildren function:

The scope chain for

changeAllBlueChildren > -Pmo{Elemewl' SCope changeAIlBlue Children
[Scope] . color "red" has an extra scope in
Iseopsl e chaivi the scope
L] alobal scope of HA‘.Z findElement
Punction, becavse
window [Object] changeAllBlueChildren
[EE et jobject] | is uested within
""""""""""""""""""" findElement. \} contains
T any elements from

findElement hat
ave velerenced mn
changeAllBlueChildr'en.

When we execvte the changepliBlueClildven function:

changeAllBlueChildren > Ac'hxla'hom OL‘JeC‘]' exaiianive look -FOV
[Scopel] . this window Vaviables we vse in
------------------------------ :h el [Object] changaA“BlLlech”df'en;
[ e e Frst lok  He
[Scope] . jchuid o PRIseRl Activation Object, then
i 0 in e findElement
f e e scope, and Finally in the
theClass blue ﬁiolml Scope.
> findElement scope
[ e W He case of color,
color "red" we don't Find it in e
Activation Object, but
do find it in e
- &lobal sco we
ik findElement scope, <o
ix odo [object] we stop looking there.
document [Object]

Inspecting the Scope Chain

You can use the Chrome developertools to see the scope chain in action as your code runs. Make sure you
have the file nested.html loaded into a browser page and the console window open in the Chrome browser

(unfortunately, the other browsers' built-in tools don't offer the same capability yet, so you'll need Chrome to
follow along).

Click the Sources tab. If you don't see anything in the left panel in the console, click the small right-pointing
Show Navigator arrow at the top left of the console and select your file, nested.html. Once you do that,
you see the source code of the file:



e 00 | | Functions: Scope Chains

€« (e A JAdvJS/nested.html

And I'm pink

% Elements Resources Network | Sources | Timeline Profiles Audits Console

[[}]| nested.htmi x

=html lang="en"=
<head>
<title= Functio Not Paused
<meta charset=' —

<styles Make sure these sections ¥ Scope Variables
Lred {
backgrour are open. Not Paused

?blue { v Breakpoints
} background-color: lightblue; No Breakpoints

.pink { » DOM Breakpoints
background-color: pink; » XHR Breakpoints
=/style> » Event Listener Breakpoints
<script=
window.onload = function{) { EAWOTCET
var theld "list";
findElement(theld);

v Call Stack

(=R T T S

}

3 |function findElement(id) {
var color = "red";
var el = document.getElementById{id);
if (el) {
changeAllBlueChildreni(el);

function changeAllBlueChildren(el) {
for {war i = 8; i = el.childElementCount; i++) {
var child = el.children[il;
if (child.tagMame.toLowerCase() == "1i") {
var theClass = child.getAttribute("class");
if {theClass == "blue") {
child.setAttribute("class", color)
}

</script>
=/head=
<body>
<ul id="list"=>
=1i “"red"=I'm already red</li=
=1i "blue"=I'm blue=/1li=
=1i lue"=I'm blue too=/1li=
=1i class="pink"=And I'm pink</1li=>
=ful=>
=/body>
3 = html=>

Q @ {} Lnel, Column1

In the panel on the right side, make sure you have the Call Stack, Scope Variables, and Breakpoints sections
open (the arrows next to them are pointed down).

Now, add breakpoints to your code. A breakpointis a way to tell the browser to stop executing your code ata
certain point. You add a breakpoint by clicking on one of the line numbers in the far left side of the left panel.
When you add a breakpoint, you'll see a little blue marker indicating the line of code where the breakpointis
located. Add three breakpoints: one on the line where we call findElement() in window.onload; one on the
line where we call changeAllBlueChildren() in findElement(), and one at the very bottom of
changeAlIBlueChildren() (the closing curly brackets for the function, which is the second to last curly
bracketin the file). Look in the panel on the right, under Breakpoints, to verify that you've clicked on the correct
lines.



e 00

| ] Functions: Scope Chains

&« C H | D

JAdv]S/nested.html

And I'm pink

% Elements Resources Network | Sources | Timeline Profiles Audits Console

[[}]| nested.htmi x

=html lang="en"=
<head>
<title> Functions: Scope Chains =/title>
<meta charset="utf-g"=
=style>
.red {
background-color: red;

(=R T T S

}
.blue {

background-color: lightblue;
}

.pink {
background-color: pink;

=/style=
<script=
1B window.onload=—fhction{) {
- VA eld = "list";

@ FindElement(theld);

22
23 |function findElemeps£Td) {
24 var color red";
25 var _gd= document.getElementById{id);
= (el) {
changeAllBlueChildreni(el);

function changeAllBlue ldrentel) {
for (var i = B;
var child-< el.children[il;

if (chidd.tagMame. toLowerCase() == "1i") {
var theClass = child.getAttribute("class");

if {theClass == "blue") {

child.setAttribute("class", color)

1

</script>
=/head=
<body>
<ul id="list"=>
=1i class="red"=I'm already red</li=
=1i class="blue"=I'm blue=/1i>
=1i class="blue"=I'm blue too=/li>
=1i class="pink"=And I'm pink</1li=>
=ful=>
=/body>
3 = html=>

Q @ {} Lnel, Column1

#< el.childElementCount; i++) {

IGRINEL v
» Watch Expressions
¥ Call Stack

Not Paused
¥ Scope Variables
Mot Paused

¥ Breakpoints

nested.html:20
findElement({theld);

nested.html:27
changeAllBlueChildrentelh

nested.html:40
1

» DOM Breakpoints

» XHR Breakpoints

» Event Listener Breakpoints
» Workers

Now, reload the page. Don't worry, your breakpoints will stay in place. When you do, you see a "Paused in
debugger" message in the web page at the top, and the line of code at the first breakpoint is highlighted which
indicates that the execution has paused at thatline:



e 0o / _JFunctions: Scope Chains

[ J [Adv]5/nested.html

Paused in debugger

Click to resume execution.

\

x

Io]

Elements Resources Metwork | Sources | Timeline Profiles Audits Consbe
nested.html x | - B

=html lang="en"=
<head>
<title> Functions: Scope Chains =/title>
<meta charset="utf-g"=
=style>
.red {
background-color: red;

(=R T T S

}
.blue {

background-color: lightblue;
}

.pink {
background-color: pink;

=/style=
<script=
window.onload = function{) {
var theld "list";

findElement(theld);

function findElement(id) {
var color = "red";
var el = document.getElementById{id);
if (el) {
changeAllBlueChildreni(el);

function changeAllBlueChildren(el) {
for {war i = 8; i = el.childElementCount; i++) {
var child = el.children[il;
if (child.tagMame.tolLowerCase() == "1i") {

var theClass = child.getAttribute("class");

if {theClass == "blue") {
child.setAttribute("class", color)
}

</script>
=/head=
<body>
=ul id="1list">
=1i “"red"=I'm already red</li=
=1i "blue"=I'm blue=/1li=
=1i lue"=I'm blue too=/1li=
=1i class="pink"=And I'm pink</1li=>
=ful>
=/body>
= html=

Q @ {} Lnel, Column1

» Watch Expressions
¥ Call Stack

w Scope Variables
¥ Local
theld: "list"
b this: Window
F Global
¥ Breakpoints
™ nested.html:20
findElement{theld);
™ nested.html:27

changeAl1BlueChildren{el)

™ nested.html:40
1

» DOM Breakpoints

» XHR Breakpoints

» Event Listener Breakpoints
» Workers

Window

In the Call Stack section in the panel on the right, you see window.onload. That's because we called
window.onload, and we paused execution just before we call findElement (). Now, look at the Scope
Variables section. This is the scope chain. At the top of the chain is the local scope; you can see the local

variables defined there, including theld and this. Next you see the global scope, with all of its usual content

(you can open itup to see, butitcontains many properties, so be sure and close it when you're finished).

Now, we wantto continue the execution of the code until we hitthe next breakpoint. Click the small button that

looks like a "play" button (Resume script execution) atthe top left of the right panel. When you click this

button, execution resumes, until it hits the next breakpointlocated at the line where we call

changeAllBlueChildren():



800 J (" Functions: Scope Chains

JAdv]S/nested.html

Paused in debugger

x

Elements Resources Metwork | Sources | Timeline Profiles

Audits Console

Io]

(=R T T S

nested.html x

=html lang="en"=
<head>
<title> Functions: Scope Chains =/title>
<meta charset="utf-g"=
=style>
.red {
background-color: red;
}
.blue {
background-color:
}

.pink {
background-color:

lightblue;

pink;

=/style=
<script=
window.onload = function{) {
var theld "list";
findElement(theld);

function findElement(id) {
var color = "red";
var el = document.getElementById{id);
if (el) {

mulmw ] ]2
» Watch Expressions
¥ Call Stack

v

window.onload

nested.html:20

Paused on a favaScript breakpoint.

¥ Scope Variables

¥ Local

p changeAllBlueChildren:

color: "red"
poel: ul#list
id: "list™
p this: Window
F Global
¥ Breakpoints
™ nested.html:20
findElement{theld);

™ nested.html:27

function changeAllBlueCh.

Window

changeAl1lBlueChildreniel)

changeAl1BlueChildreniel];

& nested.html:40

+

» DOM Breakpoints

» XHR Breakpoints

» Event Listener Breakpoints
» Workers

function changeAllBlueChildren(el) {
for {war i = 8; i = el.childElementCount; i++) {
var child = el.children[il;
if (child.tagMame.toLowerCase() == "1i") {
var theClass = child.getAttribute("class");
if {theClass == "blue") {
child.setAttribute("class", color)
}

</script>
=/head=
<body>
=ul id="1list">
=1i “"red"=I'm already red</li=
=1i "blue"=I'm blue=/1li=
=1i lue"=I'm blue too=/1li=
=1i class="pink"=And I'm pink</1li=>
=ful>
=/body>
= html=

Q @ {} Lnel, Column1

Again the execution stops just before we call the function, so we can inspect the call stack and the scope
variables. Notice under Call Stack in the panel on the right, we now have findElement() on top, and
window.onload below. That means that we called findElement() from window.onload. Now look at the
Scope Variables. The top part of the scope chain includes the local variables defined by findElement().
Below thatis the global scope. Before you move on, notice that the second and third items in the list are still
blue because we haven't called changeAllBlueChildren() yet!

Continue the code execution by clicking the Resume script execution button. Now the execution stops on
the very last line of the changeAllBlue Children() function—on the curly brace, at the moment just before
this function returns.



e 00 ( Functions: Scope Chains x

<« X fi [Adv]5/nested.html

Paused in debugger

And I'm pink

% Elements Resources Network | Sources | Timeline Profiles Audits Console

[[}]| nested.htmi x - B
» Watch Expressions
Call Stack

=html lang="en"=
<head>
<title> Functions: Scope Chains =/title>
<meta charset="utf-g"=
=style= findElement nested.html:27
.red {
background-color: red; window.onload nested.html:20

[T N W R N

Lblue { Paused on a JavaScript breakpaoint.
background-color: lightblue;

} ¥ Scope Variables

.pink { ¥ Local
background-color: pink; p child: li.pink

: ist
</styles > f}.4u1#11
<scripts> ; Class: “pink"
window.onload = function() { thetlass: "pin
var theld = "list": b this: Window
findElement(theld); ¥ Closure

color:

rec
3 function findElement(id) { » Global Window
var color = "red";
var el = document.getElementById{id); - ztgelile
if {el) { ™ nested.html:20
changeAllBlueChildreniel); findElement(theld)

™ nested.html:27

function changeAllBlueChildren(el) { changeAllBlueChildreniel)
for {var i = @; i = el.childElementCount; i++) { & nested.html:40
var child = el.children[i]; 1
if (child.tagMame.toLowerCase() == "1i") {
var theClass = child.getAttribute("cl )i » DOM Breakpoints
if {theClass == "blue") { » XHR Breakpoints

child.setAttribute{"class", color); 8 8
! » Event Listener Breakpoints

» Workers

M~ M

W W W W

</script>
=/head=
5 =body>
<ul id="list"=>
7 =1li “"red"=I'm already red</li=
=1i lue"=I'm blue=/li=
=1i lue"=I'm blue too=/1li=
=1i class="pink"=And I'm pink</1li=>
=ful=>
=/body>
3 = html=>

Q @ {} Lnel, Column1

Now the second and third items in the list are red. Notice the Call Stack; you can see that
changeAllBlueChildren() is atthe top. We called change AllBlueChildren() from findElement(), which
we called from window.onload (the Call Stack is useful for tracking which functions are calling which!).

Look atthe Scope Variables. You see that the local variables for the change AllBlue Children() function at
the top of the scope chain. Below thatis something called Closure. This is the scope chain object for the
findElement() scope, containing the color variable. Twirl down (click so it's pointing downward) the arrow
nextto Closure so you can see it. (We'll explain why it's called Closure in anotherlesson). Then, at the
bottom of the scope chain is the global scope.

Click Resume script execution one more time to continue execution and complete the code execution.
The page returns to normal. Your breakpoints are still there (they will stay there until you delete them) so if
you want to do this again, you can simply reload the page and go through the same steps. To remove the



breakpoints, click the blue markers and they will disappear. Once you've removed the breakpoints, if you
reload the page, the page will behave as it usually does, and execute the code all the way through with no

stops.
In this lesson, you learned all about scope, including the details of how it works with the scope chain. Nested functions,
sometimes called "inner functions," create additional levels in the scope chain, so we explored how to create nested functions

and how scope works when you have a nested function. Lexical scoping is a rule thatlets us find the correct value of a variable
to use by looking in each level of the scope chain, from the top (first) position, to the bottom position (always the global scope).

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.



http://creativecommons.org/licenses/by-sa/3.0/legalcode

Invoking Functions

Lesson Objectives

When you complete this lesson, you will be able to:

e call afunction as a function.

e call afunction as a method.

e call afunction as a constructor.

e call a function with apply() and call().

e use this when we call functions in different ways.

e compare how this is defined in nested functions with how itis defined in global functions.

e control how this is defined with apply() and call().

e usethe arguments objectto create functions that support a variable number of arguments.

Invoking Functions

In JavaScript we call, or invoke, functions in many different ways. We call built-in functions, we create and call our own
functions, we use functions as constructors, we call methods in objects, and more. In this lesson, we'll look at all the
different ways we can call functions, and the reasons we use each.

Different Ways to Invoke Functions

By now, you are familiar with how to call functions in JavaScript. It's difficult to write a script without calling at
least one function. Perhaps you're calling a built-in function, like alert, or a function you've written yourself, or
one that's supplied by a JavaScript library (like jQuery). Let's look at an example that has a couple of different
kinds of function calls:

CODE TO TYPE:

<!doctype html>
<html>
<head>
<title> Calling a function </title>
<meta charset="utf-8">
<script src="http://code.jquery.com/jquery-latest.min.js"></script>
<script>
function callMeMaybe (number) {
return "Call me at " + number;

}

window.onload = function() {
var number = callMeMaybe ("555-1212");
S ("body") .append ("<div>" + number + "</div>");
alert ("Content added");
}
</script>
</head>
<body>
</body>
</html>

= Save this in your JAdvJS folder as functionCalls.html, and Fre¥ieW S voy see the text "Call me at
555-1212" in the page, and an alert with the text, "Content added."

Here we see examples of two of the four different ways you can invoke functions in JavaScript:



e asafunction

e asamethod

e as aconstructor (we'll getto this later)

e with apply() or call() (we'll get to this later too)

First, we create and invoke our own function, callMe Maybe(), as a function (thatis, callMeMaybe() is a
regular function that we call in the normal way we call functions). We also call a function supplied by jQuery,
$() (which is shorthand for the jQuery() function—and yes, $ is a valid name for a function). Again, we call
the $() function as a function.

The second way to invoke a function is as a method. There are two method calls in this example:
$("body").append() and alert(). append() is a method of the jQuery object returned from the $() function.
We use "dotnotation" to call it, as we would any method.

So whatabout alert()? Well, remember earlier in the course, we said that built-in JavaScript functions like
alert() are actually methods of the global window object, which is the default object used to run JavaScript
programs in the browser. Because it's the default object, if you don't specify it for methods and properties (like
with our call to alert()), JavaScriptassumes you mean window.alert(). So calling alert() is actually a
method call, not a function call.

There's actually a third method call implied in this code. Can you find it? It's the function assigned to the
window.onload property. We don't call this method ourselves; the browser is calls it for us when the page
has completed loading.

An important distinction between calling a function as a function and as a method is that (mostofthe time)
you need to use the dot notation to call a method. You specify the name of the object, like window, and the
name of the method, like alert(), and separate the two with a dot (period) to get window.alert(). To call a
function, you use the function name.

Let's look at the third way to call a function:



CODE TO TYPE:

<!doctype html>

<html>

<head>
<title> Calling a function as a constructor </title>
<meta charset="utf-8">
<style>

.square {
background-color: lightblue;
cursor: pointer;

}

.circle {
background-color: orange;
cursor: pointer;

}

.square p, .circle p {
padding-top: 35%;
text-align: center;
-webkit-user-select: none;
-moz-user—-select: none;
-ms-user-select: none;
user-select: none;

}

</style>
<script>

function Square (id, name, size) {
this.id = id;
this.name = name;
this.size = size;

this.display = function() {
var el = document.getElementById(this.id);
el.style.width = this.size + "px";
el.style.height = this.size + "px";
el.innerHTML = "<p>" + this.name + "</p>";
console.log(this.name + " has size " + this.size +
", and is a " + this.constructor.name) ;
}i
}
window.onload = function() {
var square = new Square("sl", "square one", 100);
square.display() ;
}
</script>
</head>
<body>
<div id="sl" class="square"></div>
</body>
</html>

= Save this in your /AdvJS folder as constructorCall.html, and PreVIEW & A jight blue square with the
text "square one" appears in the page. In the console, you see the message "square one has size 100, and

is a Square."

As we mentioned in the lesson on constructing objects, when you invoke a function with the new keyword,
you are calling that function as a constructor rather than as a function. So here, when we invoke the Square()

function with new Square(...), we're invoking that function as a constructor.

Constructors create an object, which we can reference with the this keyword to assign it property values, and

that objectis returned automatically by the constructor. Any function can be invoked as a constructor

(although if you invoke a function not designed specifically as a constructor with new, you probably won't get
a useful object back). As convention dictates, we begin constructor functions' names with an uppercase letter

to distinguish these functions from regular functions.

Many objects have methods as properties. We create the Square object with the Square() constructor, so

you can see here an example of invoking a function as a method, too: square.display().



The fourth, and final, way to invoke a JavaScript function is indirectly, using the function object's call() and
apply() methods. You haven't seen these methods yet, so we'll spend a significantamountoftime on the
subject here. The main reason to use these methods is to control how t his is defined, so first we'll talk about
what happens to this in each of the ways we invoke functions.

What Happens to this When You Invoke a Function

The rules for how this is defined when you invoke a function depend on how you invoke the function and the
contextin which you invoke it. Let's take a look at some examples. We'll modify the previous example of the
Square constructor to illustrate. Copy the previous file to a new file, this.html, and modify itas shown:



CODE TO TYPE:

<!doctype html>

<html>

<head>
<title> What happens to this? </title>
<meta charset="utf-8">
<style>

.square {
background-color: lightblue;
cursor: pointer;

}

.circle {
background-color: orange;
cursor: pointer;

}

.square p, .circle p {
padding-top: 35%;
text-align: center;
-webkit-user-select: none;
-moz-user-select: none;
-ms-user-select: none;
user-select: none;

}

</style>
<script>

var n = 0;

function Square(id, name, size) {
console.log("This at the top of the Square constructor: ");
console.log(this);
this.id = id;
this.name = name;
this.size = size;

this.display = function() {
console.log("This in the Square's display method: ");
console.log(this);
var el = document.getElementById(this.id);
el.style.width = this.size + "px";
el.style.height = this.size + "px";
el.innerHTML = "<p>" + this.name + "</p>";
console.log(this.name + " has size " + this.size +
", and is a " + this.constructor.name);
}i
console.log("This at the bottom of the Square constructor:
console.log(this);
}
window.onload = function() {
console.log("This in window.onload: ");
console.log(this);
var square = new Square("sl", "square one", 100);
setupClickHandler (square) ;
square.display () ;
}
function setupClickHandler (shape) {
console.log("This in setupClickHandler: ");
console.log(this);
var elDiv = document.getElementById (shape.id);
elDiv.onclick = function() {

console.log("This in click handler: ");
console.log(this);
n++;

var counter = document.getElementById("counter " + shape.id);

counter.innerHTML = "You've clicked " + n + " times.";
}i
}
</script>

")




</head>

<body>
<div id="sl1l" class="square"></div>
<p id="counter sl"></p>

</body>

</html>

= Save the file in your /AdvJ S folder as this.html and Fr®VIEW 2 we added some calls to
console.log() in several places (make sure you find them all now, because we'll refer to each of them
below) We also added a whole new function, setupClickHandler(), which adds a click handler to the "s1"
<div>, so that when you click on the "s1" <div> you'll see a message indicating how many times you've
clicked on that <div>. Open the console (reload the page if you don't see any output), and you see messages
like this:

OBSERVE:

> This in window.onload:

Window {top: Window, window: Window, location: Location, external: Object, chrom
e: Object}

> This at the top of the Square constructor:

Square {}

> This at the bottom of the Square constructor:

Square {id: "sl1l", name: "square one", size: 100, display: function}

> This in setupClickHandler:

Window {top: Window, window: Window, location: Location, external: Object, chrom
e: Object}

> This in the Square's display method:

Square {id: "sl1l", name: "square one", size: 100, numClicks: 0, display: function
}

> square one has size 100, and is a Square

Each ofthese console.log() messages displays the value of this ata particular spotin your code.

The first message is from the console.log() in the window.onload function. When you call the method
of an object, typically, this refers to the object. That's the case here: we called the function assigned to the
window.onload property (and thus, that function is a method), so this in that method is the window object.

The second message is from the console.log() atthe top ofthe Square() constructor function. Here,
this is setto a brand new object (the one created by the constructor), and because we have yetto setany of
its properties, that objectis empty.

Atthe end of the Square() constructor, we see the third message after we add properties and methods to
the object being created by the constructor. In the message we see a fully constructed Square object that will
be returned to the code that called new Square().

The fourth message is from the console.log() in the setupClickHandler(), which we call just before we
call square.display(). The value of this in setupClickHandler() is also the window object, butfor an
entirely differentreason. Here, this is set to the window object because setupClickHandler() is a globally
defined function we've created, and the context in which itis being called is the window object—that is, the
global object. Whenever you call a globally defined function as a function, this is setto the window object
(unless you've setitto something else).

The last two messages are from the console.log()s in the square.display() method. this is setto the
Square object; thatis the method we called from Square object.

We don't see the message in the "s1" <div> click handler yet (assuming you haven't clicked on that <div> yet;
if you have, justreload the page and don'tclick on itso that your messages match ours).

Now, click on the "s1" <div> (by clicking anywhere on the text). More text appears in the page, "You've clicked
1times." and in the console, you see:

OBSERVE:

>This in click handler:
<div i1d="sl" class="square" style="width: 100px; height: 100px;">...</div>




This is the message from the console.log() in the function we've assigned to the onclick property of the
"s1" <div>. Because we're assigning a function to the click property of an object (an element object
representing the <div>), this function is actually a method. Within that method, this is setto the object that
contains the method we're calling—thatis, the "s1" <div>.

Try clicking again. Notice that we increment the global variable n each time you click in order to keep track of
the total number oftimes you've clicked. (As an exercise, think about why n has to be a global variable here.)

So far so good; everything is pretty much as we'd expect. Now let's make a change and see what happens:

CODE TO TYPE:

Far—ar———_O—

function Square (id, name, size) {

] bl (vl 2 PR I 4 £ 1 la) i i "y
TSoTre-TO08 T 1S~ ot ClIC CoOr T CIT oo oo e oIS TracCTor T
k| h I
OISO Tre-TOg (TS

this.id = id;
this.name = name;
this.size = size;
this.numClicks = 0;

this.display = function() {

hl h] L0 L o : i o 1 A b ool LT
COTr T TOTg T it TIT—CIT AT == SO ST meTToa 2
bl h] Lo
OTr TCTTOg Tt ST7

var el = document.getElementById(this.id);

el.style.width = this.size + "px";

el.style.height = this.size + "px";

el.innerHTML = "<p>" + this.name + "</p>";

console.log(this.name + " has size " + this.size +
", and i1s a " + this.constructor.name);

}i

this.click = function() {
console.log("This in the Square's click method: ");
console.log(this);
this.numClicks++;
document.getElementById("counter " + this.id) .innerHTML =
"You've clicked " + this.numClicks + " times on " + this.name;

}r

1 1 (Il o = =l 1= = =1 = = LLAY
freote—togtiPhis—at—the—bottom—of—the—Saguare FreEraetor :
1 1 T
OIISUTIC . TO9 (LIS 7
window.onload = function() {
1 1 (1l o 3 2 <l 1 i L1AY
rsote—togt ' Phis—ir—windowontoacs—"r;
1 1 T
OIISUTIC . TO9 (LIS 7

var square = new Square("sl", "square one", 100);
setupClickHandler (square) ;
square.display () ;

}

function setupClickHandler (shape) {

ul ul (N ml o 4 4= Vol =11 < 11
ITTOUT . L g A TITITS TIT =} L,ukl LT T O RNITAITO T T T . T r
ul ul Ll o )\
rsote—togtthisr
var elDiv = document.getElementById (shape.id);
1o 1 1 £ i AY L
I . ITCTTUOUNRN TOITCTIUIT U/ 1
ul ul LAl o < 1 1 L. <1 11
CUIT UJ_C.J.\JH A T1ITT L1IT | e N IIOITUTT T . T r
ul ul VA N
CUIT J_C-J.U\j { CITT T r
L
-
= <l = s el | =1 Tl (1) . 11 I N~ LAY
gL CUUITCTT — L bullLCiAL.\jC COTTINCTITCID T COUTITC p. T DIIOPC-LU/ ’
A= H IIONAT 11 1 1 - 1 <l 11 Il I 11 . 11
CUOTITCT 1. LITITC T TTTTITT ERwawy C LT T CRTTE T 1T T C L1107 r

—_—

elDiv.onclick = shape.click;




= and PTEVIEW S hreview. We replaced the click handler for the "s 1" <div> that we defined in
setupClickHandler() with a method of the square object, square.click() (we assign itto the onclick
property with shape.click in the setupClickHandler() function since we're passing the square into a
paramater named shape). Essentially the method performs the same task as the previous click handler did,
except that now we keep track of the number of clicks on the book with a property of the square object,
square.numClicks, rather than with a global variable.

Now try clicking on the "s1" <div> as you did before. It doesn't work! You see the text "You've clicked NaN
times on the book" in the page. Recall that NaN means "Nota Number," so something went wrong with the
counter. In addition, we don't see the name of the book like we should.

Look at the code for the click() method:

OBSERVE:
this.click = function() {
console.log("This in the Square's click method: ");

console.log(this) ;

this.numClicks++;

document .getElementById ("counter " + this.id) .innerHTML =
"You've clicked " + this.numClicks + " times on " + this.name;

i

We don't see the correct values for either this.numClicks or this.name. Looking at the console again,
you'll see that the value of this in the click() method is the "s1" <div> object (the element object), and not the
square object:

INTERACTIVE SESSION:

> This in the Square's click method:
<div 1d="sl1l" class="square" style="width: 100px; height: 100px;">...</div>

So here, the "s1" <div> object replaces the normal value of this in the method square.click(). In fact, this
will be defined as the target element objectin any function that you use as the handler for an event like "click."
This behavior comes in handy when we want to access the element that was clicked in the click handler, butin
this case, the behavior is treading on our expectations of what this should be in the method of the square
object.

Fortunately, there's an easy way around it. Instead of writing:

OBSERVE:

elDiv.onclick shape.click;

we can write:

OBSERVE:

elDiv.onclick = function() {
shape.click() ;
}

Now, this is setto the "s1" <div> in the outer click handler function (the anonymous function we're assigning
to the onclick property of the elDiv), but when we call shape.click() from within that function, this gets set
to the square object that we passed into setupClickHandler() (because now we're calling the method
normally, as a method of an object, rather than as an event handler). If you need the "s1" <div> objectin the
click handler for some reason, you could pass this to the method:



OBSERVE:

elDiv.onclick = function () {
shape.click (this) ;

}

...and change the click() method in the Square constructor to have a parameter to take this argument.

We don't need the "s1" <div> in the click() method, so for now, just change your code like this:

CODE TO TYPE:

function setupClickHandler (book) {
var elDiv = document.getElementById (shape.id);

lDJ_ -ULIQ]\_J‘_\/}\ 7 hc\t_/c. lJ_ }\,
elDiv.onclick = function() {
console.log("This in click handler: ");

console.log(this);
shape.click();
}i

= and PrEVIEW 5 Now the page updates correctly when you click the "s 1" <div>, and in the console, you'll
see thatthis is setto the "s1" <div> objectin the click handler function, and to the square objectin the
square.click() method, as you'd expect.

JavaScript's treatment of this in event handlers is a tricky subject. If you use inline event

' handlers (notrecommended!), such as <p onclick="click()">, this will refer to the global

: window object, not the <p> element object. Similarly, if you use the (now old) attachEvent ()

E Note function in IE8 and earlier, this will refer to the window object. In order to maintain consistency

' when handling this, we recommend that you use the onclick property to set your click handlers
‘ (and othercommon event handlers), or addEventListener() if you know all your users are on
IE9+. In both ofthese cases, this will be setto the element thatis clicked in the event-handling

' function.

The key point to understand in this section of the lesson is that the value ofthis is different depending on
how you invoke a function, and you'll want to know what the value of this will be in these different situations.

Nested Functions

The value of this in nested functions might not be what you expect. Let's check out an example. Create a new
HTML file as shown:



CODE TO TYPE:

<!doctype html>
<html>
<head>
<title> Nested functions </title>
<meta charset="utf-8">
<script>
function outer () {
console.log("outer: ", this);
inner () ;

function inner () {
console.log("inner: ", this);

}

outer () ;
</script>

</head>

<body>

</body>

</html>

= Save this in your JAdvJ S folder as self.html, and P"®VIEW & |n the console, you see:

OBSERVE:

outer:

Window {top: Window, window: Window, location: Location, external: Object, chrom
e: Object}

inner:

Window {top: Window, window: Window, location: Location, external: Object, chrom
e: Object}

The firstresult should notbe a surprise: we know that when you call a globally defined function, this is setto

the global window object.

The value of this is the window objectin the inner() function too. You might be surprised if you expected

this to be defined as the function outer (since outeris an object—yes, functions are objects too!). Another

thing to remember about this.

How about when you're inside an object constructor and call a nested function?



CODE TO TYPE:

<!doctype html>

<html>

<head>
<title> Nested functions </title>
<meta charset="utf-8">

<script>

function outer () {
console.log("outer: ", this);
inner () ;
function inner () {

console.log("inner: ", this);

}

}

outer () ;

function MakeObject () {
this.aProperty = 3;
console.log("outer object: ", this);
function inner () {

n

console.log("inner to object: ", this);
}
inner () ;

}

var outerObject

</script>

</head>

<body>

</body>

</html>

new MakeObject();

=l and PrEVIEW % The results you see this time might be even more surprising:

OBSERVE:

outer object: MakeObject {aProperty: 3}
inner to object:
Window {top: Window,
e: Object}

window: Window, location: Location, external: Object, chrom

this is defined to be the object we're creating in the Make Obje ct() constructorin the first message (as

expected), butinside of the inner() function (that defines and calls inside the constructor). this is defined as
the global window object. We "lose" the value of this (thatis, the object we're creating) in the nested function.

As aresult of this behavior,a common idiom in JavaScriptis to "save" the value of this in another variable

so it's accessible to the

nested function, like this:



CODE TO TYPE:

<!doctype html>

<html>

<head>
<title> Nested functions </title>
<meta charset="utf-8">

<script>

function outer () {
console.log("outer: ", this);
inner () ;
function inner () {

console.log("inner: ", this);

}

}

outer () ;

function MakeObject () {
this.aProperty = 3;

console.log("outer object: ", this);

var self = this;
function inner () {
console.log("inner to object: ", +hisself);
}
inner () ;
}
var outerObject = new MakeObject();
</script>
</head>
<body>
</body>
</html>

= and FrevIEWw s sreview. Now you see:

OBSERVE:

outer object: MakeObject {aProperty: 3}
inner to object: MakeObject {aProperty: 3}

We saved the value of this in the variable self before calling inner(). Because of lexical scoping, the inner()

function can see the value of self, and so can access the object being created by the constructor.

The behavior we've just described (this defined as the global window objectin nested

Note functions) may change in a later version of JavaScript.

When You Want to Control How this is Defined

So you've seen how this is defined when you invoke (global) functions as functions, when you invoke

functions as constructors, when you invoke functions as methods, and in the special cases when you invoke

functions as click event handlers, and when you invoke nested functions.

In all these cases, JavaScriptrules determine how this is defined. But what if you want to take control and

define your own value for t his when you invoke a function?

That's when we use apply() and call(). These methods are designed specifically to allow you to define the

value of this inside a function you invoke with apply() or call().

Let's say you decide to add another shape to your program. Editthis.html as shown:



CODE TO EDIT: this.html

<script>
function Square (id, name, size) {
this.id = id;
this.name = name;
this.size = size;
this.numClicks = 0;

this.display = function() {
var el = document.getElementById(this.id);
el.style.width = this.size + "px";
el.style.height = this.size + "px";
el.innerHTML = "<p>" + this.name + "</p>";
console.log(this.name + " has size " + this.size +
", and is a " + this.constructor.name);

}i

this.click = function() {
1 1 LUl o 2 el o 1 1 - 1 el <l L1
CUIT (P -y J_\JLJ Y T1ITT 1T C1T uxiucl.\_c C T T TN T CTITOU . T r
| 1 Lalo o AY
COTT TS TOg IS/

this.numClicks++;
document.getElementById("counter " + this.id) .innerHTML =
"You've clicked " + this.numClicks + " times on " + this.name;

}i

function Circle(id, name, radius) {
this.id = id;
this.name = name;
this.radius = radius;
this.numClicks = 0;

this.display = function() {
var el = document.getElementById(this.id);
el.style.width = (this.radius * 2) + "px";
el.style.height = (this.radius * 2) + "px";
el.style.borderRadius = this.radius + "px";
el.innerHTML = "<p>" + this.name + "</p>";
console.log(this.name + " has radius " + this.radius +
", and is a " + this.constructor.name) ;
}i
this.click = function () {
this.numClicks++;
document.getElementById("counter " + this.id) .innerHTML =
"You've clicked " + this.numClicks + " times on " + this.name;

}i

window.onload = function() {
var square = new Square("sl", "square one", 100);
setupClickHandler (square) ;
square.display () ;

var circle = new Circle("cl", "circle one", 50);
setupClickHandler (circle);
circle.display();

function setupClickHandler (shape) {
var elDiv = document.getElementById (shape.id);
elDiv.onclick = function() {
shape.click();

}
</script>
</head>




<body>
<div 1d="sl" class="square"></div>
<div id="cl" class="circle"></div>
<p id="counter sl"></p>
<p id="counter cl"></p>

</body>

</html>

= and FTEVIEW S A circle appears in the page with the name "circle one.” You can click the square and
see the message "You've clicked 1times on square one," and you can click the circle and see the message
"You've clicked 1times on circle one." Repeated clicks on either object add to the click countin the
appropriate displayed sentence.

We added a new Circle() constructor that's similar to Square(), except thatit has a radius, and its display()
function is different. The click() function is exactly the same though.

We also added new code in the window.onload function to create a circle object, call
setupClickHandler() to add a click handler to the "c1" <div> object representing the circle in the page, and to
call circle.display() so we see itin the page.

Each shape gets its own separate click handler. When we pass square to setupClickHandler(), we set the
click handler for the "s 1" <div> object to the square's click() method, and when we pass circle to
setupClickHandler(), we set the click handler for the "c1" <div> object to the circle's click() method.

Because the code for both is exactly the same, we can pull the code out of the two objects and use the same
code for both. Modify this.html again, as shown.



CODE TO TYPE:

function Square(id, name, size) {
this.id = id;
this.name = name;
this.size = size;
this.numClicks = 0;

this.display = function() {
var el = document.getElementById(this.id);
el.style.width = this.size + "px";
el.style.height = this.size + "px";
el.innerHTML = "<p>" + this.name + "</p>";
console.log(this.name + " has size " + this.size +
", and is a " + this.constructor.name) ;

S bl h P g VAN 4
TITTS TTrICK = anCTtTro{7 T
=l o —
CIITS. TaimCc T ITCRS T 1y
<l i T L . DK VA 1] i w1 PR IImNAT
goCHmMe It g€t reieiTcoy rta (. cogircetr T CIILTS . Lo » rierirrrm —
i1} 1 k] leadl 11 L 1 o 1 TR | B woo o
ot CTICRES T CIiIro. gncrIrer T TIIre T Tl oS . [raney

function Circle(id, name, radius) {
this.id = id;
this.name = name;
this.radius = radius;
this.numClicks = 0;

this.display = function() {

var el = document.getElementById(this.id);

el.style.width = (this.radius * 2) + "px";

el.style.height = (this.radius * 2) + "px";

el.style.borderRadius = this.radius + "px";

el.innerHTML = "<p>" + this.name + "</p>";

console.log(this.name + " has radius " + this.radius +
", and 1s a " + this.constructor.name);

b
i 1 — £ = L) L
thris—etiele furretior
T o o 1 T
CITT « L LCIIIT T T CN Ly
<l A= o vl | =1 T ol 11 A= 11 1 =l HEPNAY IIMNAT
TOT T LlL,.\j C Lo ITCTIT J.lL,l_)YJ.u\ CUOUUITCT T T CITT o LT LTITTIT L TTTTTIT o
11 1 1 = 1 <l 11 1 =l o 1 L 11 A= 11 Il =l
ERwawy C LT T CTRTTE T CITITS TTUIIT i O T CTTIT 1T T CITITOS . 1T,
_—
function click () {
n 3 4 3 3 . n .
console.log("This in click function: ) ;

console.log(this);
this.numClicks++;
document.getElementById("counter " + this.id).innerHTML =
"You've clicked " 4+ this.numClicks + " times on " + this.name;

window.onload = function() {
var square = new Square("sl", "square one", 100);
setupClickHandler (square) ;
square.display () ;

var circle = new Circle("cl", "circle one", 50);
setupClickHandler (circle);
circle.display();

function setupClickHandler (shape) {
var elDiv = document.getElementById (shape.id);
elDiv.onclick = function() {




I 1 ale (
TapPpe-CTICRT7

click.call (shape);

'-'5-" Save and Preview s Try clicking on both the square and the circle. You see messages in the page
showing how many times you've clicked on the respective shapes. In the console, you see the messages
displayed by the new click() function we just added, that show which shape you've just clicked on.

First, we removed the click() methods from each of the shapes, and put the code into a new click() function.
The code is exactly the same, except that we added the two console messages atthe top The code in the
click() method still refers to this, and properties like this.numClicks and this.name, butifyou call a
global function, this is setto the window object. It shouldn't be setto either the square or the circle though,
so what's going on?

This is where call() comes in handy. When we set up the click handler for the shapes, we made one small
change: we changed the code from shape.click() to click.call(shape). So what's the difference? Whatdoes
call() do? Good questions!

click() is a function. We can call that function using the call() method (I'll explain where that method comes
from in a justa moment), and pass in the object that we wantto use for this, which in this case is the shape
object, which will be square when we've passed square to setupClickHandler, and circle when we've
passed circle to setupClickHandler. Calling the click() function using the call() method is justlike calling
the function in the normal way (with click()), except that we getto choose how this should be defined.

Inside click(), this is setto either the square or the circle, depending on which element we click on. Ifit's
setto square, we reference the square's numClicks property, and the square's name property. We do the
same for the circle.

call() is a method of the click() function. As we've said previously, a function is an object with properties and
methods justlike any other object. Whenever you define a function, like click(), you're actually creating an
instance of the Function object using the Function() constructor (JavaScript does thatfor you behind the
scenes). Remember that an object can inherit methods and properties from its prototype. In this case,
function's prototype includes the method call(). You can check for yourself, like this (this session assumes
you've loaded the this.html file):

INTERACTIVE SESSION:

> click
function click () {
console.log("This in click function: ");
console.log(this);
this.numClicks++;
document.getElementById("counter " + this.id).innerHTML =
"You've clicked " + this.numClicks + " times on " + this.name;
}
> click.call
function call() { [native code] }

Firstwe ask to display the function click(), by typing the name of the function. Then we ask to see the click()
function's call property, which itinherits from its Function prototype, and which is implemented natively by
the browser (so you can't see the details).

call() and apply()

The methods call() and apply() do essentially the same thing, but you use them slightly differently. The first
argument of both methods is the object you wantto stand in for this. If the function you're calling takes
arguments, then you also pass these arguments into both call() and apply(). For call(), you pass these
arguments as a listofarguments (like you normally do with arguments), and for apply(), you pass all the
arguments in an array.

So, to use call(), you'd write:



OBSERVE:

function myFunction (paraml, param2, param3) {

}
var anObject = { x: 1 };
myFunction.call (anObject, 1, 2, 3);

..and to use apply(), you'd write:

OBSERVE:

function myFunction (paraml, param2, param3) ({

}
var anObject = { x: 1 };
myFunction.apply (anObject, [1, 2, 3]);

In both of these examples, the objectanObject is defined as the value of this in the function myFunction(),
and the arguments 1, 2, 3 are passed to myFunction(), and stored in the parameters param1, param2, and

param3.

As you've seen with our example of using call() to call the click() function, the arguments are optional—if
your function doesn't expect arguments you don't have to supply any.

You can use call() and apply() on your own functions, as well as JavaScript's built-in functions. For
instance, let's say you have an array of numbers and you want to find the maximum number in the array.
There is a handy Math.max() method available, butitdoesn't take an array, it takes a listof numbers:

INTERACTIVE SESSION:

> var myArray = [1, 2, 31;
undefined

> Math.max (myArray)

NaN

> Math.max (1, 2, 3)

3

However, we can use apply() to getaround this, like this:

INTERACTIVE SESSION:

> Math.max.apply(null, myArray);
3

Notice that we pass null as the value to be used for this (because we don't need any object to stand in for
this), and because we're using apply(), the values from the array are passed into the Math.max() method as
alistofarguments.

Function Arguments

When you invoke a function, you pass arguments to the function's parameters. When the number of
arguments is equal to the number of parameters, each parameter gets a corresponding argument from the
function call. So, what happens if the number of arguments doesn't match the number of parameters?

Suppose you want to write your own max() function (similar to Math.max()). How would you do it? Well, you
could start simple:



CODE TO TYPE:

<!doctype html>
<html>
<head>
<title> max </title>
<meta charset="utf-8">
<script>
function max (nl, n2) {
if (n1 > n2) {
return nl;
}
else {
return n2;
}
}

console.log(max (99, 101, 103));

</script>
</head>
<body>
</body>
</html>

= Save this in your JAdvJ S folder as max.html, and PrEVIEW 5% |n the console, you see 101.

The argument 103 does get passed to the function, but since we don't give it a parameter name, and we don't

use it, it's notincluded in the calculation of the maximum number.

If you pass too few arguments, then the parameter that's expecting an argument has the value undefined.
Let's see what happens if we pass only one argumentto our max() function:

CODE TO TYPE:

function max (nl, n2) {
console.log("n2 is " + n2);
if (nl > n2) {
return nl;
}
else {
return n2;
}
}

console.log (max (99——=F6+—363) ) ;

= and PreVIeW ¥ |n the console, you see that "n2 is undefined.”

We'd like to write our max() function so thatit can take any number of arguments, like Math.max(), and find
the maximum value. To do that, we can use the arguments object. This object contains all the arguments
passed to a function. Let's rewrite our max() function to use it:



CODE TO TYPE:

function max (v/tHH5——+=) {

1 k| | [N T 0 2
COTSoTre-TOog T 1T T Iz,
= 1 2 e
i e Tz

. 1
reToriT— T

4+
reTorit Iz

var max = Number.NEGATIVE_INFINITY;
for (var 1 = 0; 1 < arguments.length; i++) {
if (arguments[i] > max) {
max = arguments([i];
}
}
return max;

}

console.log(max (99, -55, 101, 103, 22));

= and PrevieW 5% voy see the result 103 in the console.

First notice that our max() function no longer specifies any parameters. That's because we're going to
access all the arguments with the arguments object.

The arguments objectis an array-l/ike object; you can iterate over it, and it has a length property, so we can

use it like an array to iterate over all of the arguments and find the maximum value. To do that we initialize the
variable max to negative infinity, and then look at each argument to see ifit's greater than max. Each time an
argumentis greater than max, we update the value of max, so the final resultis the maximum value of all the
arguments we passed into the object.

The Four Ways to Invoke a Function

You've seen examples of each of the four ways you can invoke a function:

e as afunction
e as amethod
e as aconstructor

e with apply() or call()

You'll likely use the first three most often, but there are times when the fourth (using apply() or call()) can
come in handy too.

In general, the this keyword is bound to the object that contains the function. For global functions, that's the
global window object; for constructors, that's the object being constructed; and for methods, that's the object
that contains the method you're calling.

Three big exceptions to this rule are: when you are in an event handler function on an event like "click"; when
you've explicitly changed the value defined for this using call() or apply(); and when you are in a nested
function. Memorize the way this behaves in these three cases so you don't get tripped up (notto mention
that having a grasp on this is a great way to ace those JavaScriptinterview questions)!

In this lesson, you learned about the four ways we can invoke functions in JavaScript, and what happens to this in
each case. Take some time to practice invoking some functions before you move on to the nextlesson, where we'll
look atinvocation patterns: code designs that use function calls in some interesting ways.

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.



http://creativecommons.org/licenses/by-sa/3.0/legalcode

Invocation Patterns

Lesson Objectives

When you complete this lesson, you will be able to:

e call afunction recursively.

e create an objectso its methods can be chained.
e call functions by chaining them together.

e create a static method.

e distinguish between static and instance methods.

Invocation Patterns

In this lesson, we take a look at some "invocation patterns”: thatis, ways to structure your function calls. These aren't
new ways to invoke functions, but rather code designs involving function calls that may be useful as you continue in
your JavaScript programming.

Recursion

Recursion is when you call a function from within that same function. It's a powerful programming tool, so it's
an important conceptto master, butit can be tricky.

A recursive function can always be converted to an iteration, so we'll start by looking atan example of
iteration and then rewrite the function using recursion instead.

We'll use code from a previous example using the Square() constructor to create squares in the page.
Create a new HTML file and copy in this code:



CODE TO TYPE:

<!doctype html>
<html>
<head>
<title> Recursion </title>
<meta charset="utf-8">
<style>
.square {
background-color: lightblue;
cursor: pointer;
}
.square p |
padding-top: 35%;
text-align: center;
-webkit-user-select: none;
-moz-user-select: none;
-ms-user-select: none;
user-select: none;
}
</style>
<script>
function Square (id, size) {
this.id = id;
this.size = size;

this.display = function() {
var el = document.createElement ("div") ;
el.setAttribute ("id", this.id);
el.setAttribute ("class", "square");
el.style.width = this.size + "px";
el.style.height = this.size + "px";
el.innerHTML = "<p>" + this.id + "</p>";
console.log(this.id + " has size " + this.size +
", and is a " + this.constructor.name);
document.getElementById ("squares") .appendChild(el) ;
}i

function createSquares (n) {

var size = 10;
if (n == 0) {
return;

}
while (n >= 1) {

var s = new Square(("s" + n), n * size);
s.display();
n--;
}
}
window.onload = function () {

createSquares (7) ;
}i
</script>
</head>
<body>
<div id="squares"></div>
</body>
</html>

= Save this in your /AdvJ S folder as recursion.html, and P®VIeW ¥ voy see seven squares,
decreasing in size:



aRE] =
n recursion

« C N [Adv]S/recursion.html

(The names of the smallest squares don'tfitinto the <div>s properly; don't worry about that).

Take a look at the code:



OBSERVE:

function createSquares(n) {

var size = 10;
if (n == 0) {
return;

}
while (n >= 1) {

var s = new Square(("s" + n), n * size);
s.display()
n--;

We use a function, createSquares(), to create a given number of squares. In aloop, we invoke the
Square() constructor, and then display the resulting square object by calling its display() method.

The display() method creates a new <div> object representing the square, and appends it to the "squares”

<div> in the page.

To create the correct number of squares, we use a while loop to iterate the number, n, passed into

createSquares(). We also use n to compute the size of the square to add to the page (using n * size, where

size is 10), and include it as part of the name of each square (for example, s3).

We can rewrite this function using recursion by replacing the while loop with a call to the function
createSquares():

CODE TO TYPE:

function createSquares (n) {

var size = 10;
if (n == 0) {
return;

var s = new Square(("s" + n), n * size);
s.display () ;
createSquares (n-1) ;

= and PrEVIEW 2 you see the same seven squares in decreasing sizes.

Let's compare the resursive version to the version with the iteration to see how that works:

OBSERVE:

while (n >= 1) {

var s = new Square(("s" + n), n * size);
s.display () ;
n--;

Here we iterate through all of the values of n until n is equal to 1. When we pass 7 to the function

createSquares(), the firsttime through the iteration, n is 7, we get a square of size 70 (using n * size, which

is 7 *10), then reduce n by one, and keep looping until n is 1.



OBSERVE:

var s = new Square(("s" + n), n * size);
s.display () ;
createSquares (n-1) ;

The recursive version does essentially the same thing, except that we call createSquares() each time we
want a square of a smaller size.

The firsttime we call createSquares(), n is 7, so we create and display a square of size 70. Then we call
createSquares() again, only we pass n - 1 as the argument to the function. So in this call to
createSquares(), nis 6. We create and display a square of size 60, and call createSquares() again, with
the argument 5, and so on.

When n is 1, we execute the code that creates and displays a square ofsize 10. Then we call
createSquares() and pass the value 0 for n. Now, instead of executing the code to create a square ofsize
0, we check and see thatn is 0 and return:

OBSERVE:

if (n == 0) {
return;

}

This if statementis known as the base case and it's vitally important because without it, the recursion will

continue forever—try it. Comment out the if block, = ,and Preview o v just like with iteration: you must

supply a conditional test to tell the iteration when to stop. In recursion, the base case tells the recursion when
to stop. We want the recursion to stop when nis 0. So in this case, we do notcall createSquares() again,
which causes the recursion to stop.

The results of both of these versions of createSquares() are exactly the same, but the first uses iteration
and the second uses recursion. Again, recursion can always be replaced with iteration.

Why Use Recursion?

Some algorithms are naturally recursive. For instance, the algorithm to compute the factorial of a numbern is
recursive. To compute the factorial of a number, say 5, we multiply 5 times the factorial of that number minus
1:

OBSERVE:

The factorial of 5 is 5 * the factorial of 4.
The factorial of 4 is 4 * the factorial of 3.
The factorial of 3 is 3 * the factorial of 2.
The factorial of 2 is 2 * the factorial of 1.
The factorial of 1 is 1.

So the factorial of 5 is 5 * 4 * 3 * 2 * 1, which is 120.

Writing this in pseudocode, you can think of this as recursively designed code:

OBSERVE:

factorial (5) = 5 * factorial (4)
factorial (4) = 4 * factorial (3)
factorial (3) 3 * factorial (2)
factorial (2) = 2 * factorial (1)
factorial(l) = 1

We are using the factorial function in the definition of the factorial function. That's the very definition of
"recursive." It's like we are using the question in the answer to the question: whatis factorial of 5? It's 5 times
the factorial of 4!

Of course, that can be frustrating unless you have an answer to the question thatdoesn'tinvolve the question
itself. That's the reason for the base case. The base case for the factorial algorithm is 1; when n is 1, we don't
call factorial again. That means you can finally stop asking the question and start getting answers. You can



plug in the value 1 for the answer to "What s the factorial of 1?" then you can then answer the question, "What
is the factorial of 2?" and so on until you get to the answer for your original question, "What is the factorial of
5?"

Every recursive algorithm works this way: you create a pile of function calls, each with solutions thatinvolve
calling that function again, until you get to the base case. Then you can start unravelling the pile until you get
back to your original function call. (See if you can implement factorial() in JavaScript—it'll be one of the
projects!)

Many algorithms for which you may want to create functions are naturally recursive. These naturally recursive
functions tend to be easier to read when they are expressed recursively, rather than when they are expressed
iteratively (using loops).

However, there's a downside to recursion. Each time you call a function, you add that function to the call
stack; this takes up memory. lteration takes up memory too, but usually not as much as a pile of functions on
a call stack. To see the call stack created by recursive calls, we can use the Chrome browsertools and add a
breakpointto the code on the line in createSquares() where we call createSquares() recursively:

06 .
e = recursion

&« C #® JAdv)S/recursion.html

85

s4

s3

52

sl

* Elements Resources Metwork | Sources | Timeline Profiles Audits Console

[I*]| recursion.html x [+ 1
39 .
this.display = function() { » Watch Expressions
var el = document.createElement("div"); ¥ Call Stack
el.setAttribute{"id", this.id);
el.setAttribute("class", "square");
el.style.width = this.size + "px";
el.style.height = this.size + "px";
el.innerHTML = =" + fthis.id + "=/p=";
console, log{this.id + " has size " + this.size +
", and is a " + this.constructor.name); ¥ Breakpoints
. document.getElementById{"squares").appendChildlel); & recursion.html-51

} createSquares({n-1);

) » DOM Breakpoints
function createSquares{n) {

. ed . - XHR Breakpoints
var size = 10; Set a breakpoint here. =P :
if (no==0) { » Event Listener Breakpoints

return; » Workers

3

¥ Scope Variables

W W L
J b

L= =B = S R PR

=== new Sgquare{("s" + n), n % size);
Z.display();
createSquares(n-1);

window.onload = function{) {
createSquares(7);

L= Q @ {} Lne1, Columnl




Then we reload the page, and execution stops each time we call createSquares() recursively. Execute the
breakpoint a few times by clicking the Resume script execution button, and you can see the function being
added to the call stack each time we call it:

e ¥ “Vrecursion »® -
&« > X |D localhost/~Beth/OST/Adv|S/Lesson8/ recursion.htmil

Paused in debugger

¥  Elements Resources Ne:wnrkh-ual"nmeline Profiles  Audits Console

ﬂEllrecursion.htme| M| v + T ﬁ Paused

39 " a_nl:l,is 3 " + this.constructor.name); » Watch Expressions + C
48 dChild({el); a
41 } . .

42 } The function is added repeatedly. — e
43
44 functico TESqUaTES LI % createSquares recursion.html:51

45 var size = 18; . )
46 if (n == @) {' createSquares recursion.html:51

:; return; createSquares recursion.html:51

var s = new Square{("s" + n), n * sizel; createSquares recursien.html:51

s.display();
I’I_ createSquares recursion.html:51

window.onload recursion.html:55

window.onload = function{) {

createSquares(7); Paused on a JavaScript breakpoint.

</script> ¥ Local
</head> n: 2
<body= » 5: Sguare
=div id="squares"=</div=> size: 18
=/body= this: Window
</htnl> - ' i
® Glnhal Window

L= Q @ {} Lnel, Columnl

Take a look at the scope variables each time you click the Resume script execution button; the value ofn
decreases by one each time. Eventually, n gets to 0, the recursion stops, and the code completes.

This happens because we're calling createSquares() from inside createSquares() before the previous
invocation of createSquares() is complete. To compare, let's say you have a function add() (that's not
recursive), and you call that function three times:



OBSERVE:

function add (numl, num2) {
return numl + num2;

}

add (1, 2);

add (2, 3);

add (3, 4);

The add() function goes on to the call stack three times. However, you only have one invocation ofadd() on
the call stack at a time, because each invocation of add() ends before the next one begins, so the call stack
never gets bigger than one function.

Now think about createSquares() again. We call createSquares() before the previous call to
createSquares() has completed. So we call createSquares(7), and while that function invocation is still
on the stack, we call createSquares(6). This function invocation goes on top of the invocation to
createSquares(7), so we have two function invocations on the stack. Then we do it again with
createSquares(5), and so on until we call createSquares(0).

When we call createSquares(0), createSquares(0) gets added to the top of the stack, but
createSquares(0) justreturns, so it gets popped off the stack right away. When createSquares(0) returns,
then createSquares(1) can finish executing and then get popped off the stack. Once that's done,
createSquares(2) can finish executing and get popped off the stack, and so on, until finally,
createSquares(7) finishes and gets popped off the stack and you're done.

Here's how the call stack gets built up as each recursive call to createSquares() takes place. Then the
function invocations are removed from the stack once we reach the base case and each function call can
finish:



createSquares

Eaclt time we call createSquares(n), createSquares n
we add a vew function vocation
createSquares n
onto the call stack.
createSquares n
createSquares n
createSquares n =5 createSquares n
createSquares createSquares n==a createSquares n
createSquares n=7 createSquares createSquares n=7 createSquares n
Mer the "base case" wien
treateSaquares(0) vetuns O,
each vocation can fish, <o the
‘ ‘ function activation objects can be
createSquares n=20
vemoved from e stack.
createSquares n=1 createSquares ‘
createSquares n = 2 createSquares ‘ createSquares n = 2
‘ createSquares n = 3 ‘ createSquares ‘ create3quares n = 3
‘ createSquares n =4 ‘ createSquares ‘ createSquares n=4
createSquares n=>5 createSquares ‘ createSquares n=2>5
createSquares n==a createSquares ‘ createSquares n==
‘createSquares n=717 ‘ createSquares ‘ createSquares o= 7 createSquares n
L I I

once e last function invocation
las completed, we can see all ow
squares i the page.

This pile of function invocations that's created on the call stack when you call a function recursively isn't a big
deal if your functions are small (and don't have too many variables in each activation object), and if the
number of times the function is called recursively (so the number of invocations that goes on the stack) is
small. If your functions are large though and have lots of variables and/or the function is called recursively
many times, then your code will take up a lot of memory. In addition, your browser will limit the number of
functions itallows on the call stack atonce.

Most of the time, you'll have functions with few local variables, so you won't call your recursive functions so
often thatit becomes problematic. So now you know whatto look out for if you run into memory issues while
using a recursive design.

Chaining (a la jQuery)

Anotherinvocation pattern you'll see in JavaScriptis method chaining. Chaining is common in some
JavaScriptlibraries, like jQuery. The technique allows you to write multiple method calls on the same objectin
a chain. For instance, instead of writing:

OBSERVE:

obj.methodl () ;
obj.method2 () ;
obj.method3 () ;

..you can write:



OBSERVE:

obj.methodl () .method2 () .method3 () ;

For method chaining to work, each method mustreturn an object so that the next method can be called on

that object. In the example above, ifobj.method1() retuns obj, thatobjectis used to callmethod2()
immediately.

Let's take a look at a concrete example. We'll use the same Squares example from earlier, and modify it a bit.
Save recursion.html to a new file in your /AdvJ S folder named chaining.ht ml, and make these changes:



CODE TO TYPE:

<!doctype html>
<html>
<head>
<title> Chaining </title>
<meta charset="utf-8">
<style>
.square {
background-color: lightblue;
cursor: pointer;
}
.square p |
padding-top: 35%;
text-align: center;
-webkit-user-select: none;
-moz-user—-select: none;
-ms-user-select: none;
user-select: none;
}
</style>
<script>
function Square (id, size) {
this.id = id;
this.size = size;
this.el = null;

this.bigger = function(size) {
if (this.el) {
this.size += size;
this.el.style.width = this.size + "px";
this.el.style.height = this.size + "px";
return this;

}i

this.color = function(color) {
if (this.el) {
this.el.style.backgroundColor = color;
return this;

b

this.display = function() {
s+ this.el = document.createElement ("div");
this.el.setAttribute ("id", this.id);
this.el.setAttribute ("class", "square");
this.el.style.width = this.size + "px";
this.el.style.height = this.size + "px";
this.el.innerHTML = "<p>" + this.id + "</p>";
console.log(this.id + " has size " + this.size +

", and is a " + this.constructor.name);

document.getElementById ("squares") .appendChild (this.

return this;

b

£ . el L e
TOnCTTIoT reaTe oottt I
: 10

[cEn TZ€—— TU7
=i fa L
I e O S AV B

i
reTu Ty

— fa) VA | P | \ % 2 \
e mew—ogtare T S L 3 A ST T
3 k1
O SPTIayY (7
FEpNYe] L LY
reatesStaresSir /)7

window.onload = function () {

el);




el L
reaTeoguaresS 7/

var mySquare = new Square ("mySquare", 100);
mySquare.display () .color ("green");
mySquare.el.onclick = function() {
mySquare.bigger (50) .color ("red") ;
bi
bi
</script>

</head>

<body>

<div id="squares"></div>

</body>

</html>

= Save and PreVIeW 2 voy see a green square with the name "mySquare." Click on the square. The
square gets bigger and turns red. Each time you click on the square it gets bigger.

In our code, we made a modification to the display() method: now that method stores the <div> element
we're creating for the square in the Square object, in the property el. Now we can use that <div> elementin
the two new methods we've added: bigger() and color(). bigger() takes a value and adds itto the size of
the square, then modifies the style of the <div> representing the square to change the size of the <div> (which
makes the square appear bigger). Similarly, color() takes a color string (like "blue," "green," or "red"), and
modifies the style of the <div> to change the background to thatcolor.

We've also added a line to each method to return this. For example:

OBSERVE:

this.color = function (color) {
if (this.el) {
this.el.style.backgroundColor = color;
return this;

}i

Each ofthe Square's three methods now returns this, so when we call mySquare.display(), we get
mySquare back as a result. That means we can call one of the other methods on the resulting object
immediately, like color() or bigger(). We can chain these methods togetherl\.

In fact, that's exactly what we do in the code after we create mySquare:

OBSERVE:

mySquare.display () .color ("green") ;
mySquare.el.onclick = function() {

mySquare.bigger (50) .color ("red") ;
bi

After creating the mySquare object, we call the display() method to create and display the <div> objectin
the page, and then chain a call to the color() method to turn the square green. Also, we setup a click
handler on the <div> so that when you click on the square, we call two methods on the square, bigger() and
color(),again chained, so thatcolor() is called on the object thatis returned by bigger().

Usually when you chain methods, you call methods on the same object for each part of the chain. It's certainly
possible to have one of the methods return a different object for the next method to be called on, but code
written that way would be much more difficult to understand, so in general, it's notrecommended. When you
create method chains, you generally want to make sure you act on the same objectin each part of the chain.

Potential benefits of chaining are that it can make code easier to read, and reduce the number oflines of code.

However, chains that are too long can be difficult to understand as well, so use chaining judiciously. (Chains
that are too long are often called train wrecks!)

Static vs. Instance Methods

One lastinvocation pattern we'll look atin this lesson is how to call static methods, and the differences



between static and instance methods.

Let's begin by exploring the Date() constructor. You can use Date() to create new date objects, like this:

INTERACTIVE SESSION:

> var nowDate = new Date ()

undefined

> nowDate.toString()

"Thu Sep 05 2013 10:17:39 GMT-0700 (PDT)"
> nowDate.getMonth ()

8

> nowDate.getTime ()

1378401459465

Here, we created a new date object, nowDate, by calling the Date() constructor function. If you pass no
arguments to the constructor, this function creates an object for the current date and time, so the resultis a
date object that represents "right now," which (as of the writing this lesson) is Thursday, September 5, 2013 at
10:17am.

The date object nowDat e has various methods and properties you can use justlike any other object. For
instance, you can use the method nowDate.toString() to geta string representing the current date and
time, and get the month with nowDate.getMonth() (note that the returned numeric value is from an array
whose indices startatzero, so September is represented by 8). You can getthe number representing the date
and time using the getTime() method.

Now try this:

INTERACTIVE SESSION:

> var time = Date.now ()
undefined

> time

1378401746077

We called a method now() on the Date object. Date and Date() are the same object: they are both the
Date() constructor function. Remember that functions are objects—and objects can have properties though.
The method now() is a method of the Date() function object.

Notice that the result, time, is a variable that contains a number representing the currenttime. It's different
from the variable nowDate though. nowDate is a Date object, whereas time is simply a number:

INTERACTIVE SESSION:

> nowDate instanceof Date
true

> time instanceof Date
false

You can use time to create a Date object, like this:

INTERACTIVE SESSION:

> var anotherDate = new Date (time);
undefined

> anotherDate

Thu Sep 05 2013 10:22:26 GMT-0700 (PDT)
> anotherDate.getTime ()

1378401746077




Once you have the anotherDate object, you can use the method getTime() to get the number representing
the date and time back (it's the same number as in the variable time that we used to create the objectin the
first place).

So, what's the difference between creating a date object using a constructor and then calling methods on that
date object, and calling a method directly on the function objectitself? And how do you add methods directly
to a function anyway?

We'll answer those questions by adding a method to the Square() constructor we've been working with in
this lesson. Modify your JavaScript code in chaining.html as shown:

CODE TO TYPE:

function Square (id, size) {
this.id = id;
this.size = size;
this.el = null;

this.bigger = function (size) {
if (this.el) {
this.size += size;
this.el.style.width = this.size + "px";
this.el.style.height = this.size + "px";
return this;

}i

this.color = function(color) {
if (this.el) {
this.el.style.backgroundColor = color;
return this;

b

this.display = function() {
this.el = document.createElement ("div");
this.el.setAttribute ("id", this.id);
this.el.setAttribute ("class", "square");
this.el.style.width = this.size + "px";
this.el.style.height = this.size + "px";
this.el.innerHTML = "<p>" + this.id + "</p>"
console.log(this.id + " has size " + this.size +

", and is a " + this.constructor.name) ;

document.getElementById ("squares") .appendChild (this.el);
return this;

}i

}

Square.info = function() {
return "Square is a constructor for making square objects with an id and
size.";

}i

window.onload = function() {
var mySquare = new Square ("mySquare", 100);
mySquare.display () .color ("green");
mySquare.el.onclick = function() {
mySquare.bigger (50) .color ("red") ;
}i

var info = Square.info();
console.log(info) ;

}i

= and PreVIEW 5% o the console, the message, "Square is a constructor for making square objects with
anid and size." is displayed.



We're working with two different kinds of objects here. First, we use the Square() constructor to create new
objects by calling Square() with new:

OBSERVE:

var mySquare = new Square ("mySquare", 100);

In this case, the object mySquare is called an instance of Square: it's an object created by the constructor,
an object that has the properties and methods we specify in the constructor by saying
this.PROPERTYNAME = SOME VALUE. Methods like bigger(), color(), and display() are called instance
methods, because they are methods of the objectinstances created by calling Square() with new.

The other object we're working with is the Square object. This object happens to be a function, butit's like
other objects in that it has methods and properties. Also, just like any other object, we can add a new property
or method to it:

OBSERVE:
Square.info = function() {
return "Square is a constructor for making square objects with an id and siz
@Y
bi

In this case, we're adding a method of the Square object, nota method ofthe mySquare instance object we
created using Square() as a constructor. We call methods like this static methods: they are methods of the
constructor function object. We say they are "static" because, unlike instance methods that may return
different values depending on the properties of the specific instance you're working with (for example, one
square might have size 10 and color red, while another might have size 200 and the color green), static
methods don'tvary based on those differences. Static methods are methods of the constructor, not methods
ofthe instances.

We can't access static methods from objectinstances, just like we can't access instance methods from the
constructor object. Let's test this:

CODE TO TYPE:

window.onload = function() {
var mySquare = new Square ("mySquare", 100);
mySquare.display() .color ("green");
mySquare.el.onclick = function() {
mySquare.bigger (50) .color ("red") ;
bi

var info = Square.info();
console.log(info) ;

mySquare.info () ;

= and PTEVIEW S 1n the console, you see the error:

OBSERVE:

Uncaught TypeError: Object #<Square> has no method 'info'

Here, we try to call a static method, info (), from an objectinstance. It doesn't work.

Try this:



CODE TO TYPE:

window.onload = function() {
var mySquare = new Square ("mySquare", 100);
mySquare.display() .color ("green") ;
mySquare.el.onclick = function() {
mySquare.bigger (50) .color ("red") ;
}i

var info = Square.info();
console.log(info);

fa) (N -DNAN
mryoguatre - TIrrot/

Square.color ("red") ;

}i

= and PrEVIEW S | the console, you see another error message:

OBSERVE:

Uncaught TypeError: Object function Square(id, size) {

} has no method 'color'

Here, we try to access an instance method from the Square object, and again, it won't work.

Let's go back to the Date object. When we created a new date object, nowDat e, then called methods on that
object, like getMonth() and getTime(), we used instance methods: methods defined in the instance objects
we create by calling the Date() constructor function with new. When we called Date.now(), we used a static
method: a method defined in the Date function objectitself.

So, when should a method be an instance method, and when should a method be a static method?

Well, objectinstances are used to represent specific items, like a square object with a specific size, or a date
object with a specific date and time. So it makes sense to have methods like getMonth() and
getFullYear() for a date object instance, because that object has specific values for the month and the year,
the values you gave it when you created the object using the constructor with new.

The constructor function, Date() doesn't represent a specific date or time. So asking the Date objectfora
month, for instance:

OBSERVE:

Date.getMonth ()

..makes no sense. Date doesn'trepresent any particular date until you create a specific instance. However,
the Date object can have useful properties and methods that aren't related to a specific date you're creating.
The now() method is one ofthose useful methods: it generates a number that represents the date and time
of"rightnow." There is no need to create a new date objectinstance to get that number.

Similarly, the Square.info() method provides information about the Square constructor function thatis not
related to any specific instance of a square. Meanwhile, methods like color() and display() are only relevant
for a specific instance of a square, one that has a size and an element associated with it that can be assigned
acolor.

So, in a sense, invoking static methods and instance methods are the same. A static method is invoked on
the objectin which itis defined (the constructor function) and an instance method is invoked on the objectin
which it's defined as well (the instance object created by calling the constructor function). The trick is to keep
track of which objectis which.

Further, we don'tjust use static and instance to describe methods; we can also use these terms to describe
other properties of objects. So, in our Squares example, we say the property size is an instance variable of a
square object. You could add a static variable, say,recommendedSize, to the Square() constructor, like
this:



OBSERVE:

Square.recommendedSize = 100;

To access the variable from the info () method, you'd write:

OBSERVE:
Square.info = function() {

return "Square is a constructor for making square objects with an id and siz
e. " +

"The recommended size for a square is " + Square.recommendedSize + ".

"w.
’

}i

In this lesson, we talked about three invocation patterns that you'll see used frequently in JavaScript: recursion, chaining, and
static methods. There are other invocation patterns, of course, which you may encounter as you continue your JavaScript
studies and get more programming experience. In upcoming lessons we'll explore the Module Pattern, butfor now, do the quiz

and the project, then take a break. When you're rested, continue on!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.



http://creativecommons.org/licenses/by-sa/3.0/legalcode

Encapsulation and APIs

Lesson Objectives

When you complete this lesson, you will be able to:

e create private properties and methods in an object.
e create a public interface to use the object.

Encapsulation and APIs

One of the benefits of objects in an object-oriented language is encapuslation: the ability to compartmentalize
properties and behaviors in an object, and provide an interface so the restof your program doesn't have to worry
about how certain behaviors are implemented. The object just works. Think of other objects you use in JavaScript, like
JSON or Date or Math. These objects all have properties and methods that work; you don't need to worry about the
inner workings. Sometimes you might want to hide the internal operation of your properties and methods, so
programs don'tdepend on any particularimplementation. In this lesson, we'll learn how to use objects and functions
to encapsulate structure and behavior, and how to use information hiding techniques to protectimplementation details.

Privacy, Please

In the previous lesson, we used a Square() constructor to create square objects and display them in a web
page. In that example, we created some properties and methods to give a new square objectan id, a size,
and a <div> element to represent the square objectin the web page:



OBSERVE:

function Square(id, size) {
this.id = id;
this.size = size;
this.el = null;
this.bigger = function(size) {
if (this.el) {
this.size += size;
this.el.style.width = this.size + "px";
this.el.style.height = this.size + "px";

return this;

}i

this.color function (color)
if (this.el) {
this.el.style.backgroundColor
return this;

{

color;

}i

this.display

= function ()

{

this.el = document.createElement ("div") ;
this.el.setAttribute ("id", this.id);
this.el.setAttribute ("class", "square");
this.el.style.width = this.size + "px";
this.el.style.height = this.size + "px";
this.el.innerHTML = "<p>" + this.id + "</p>";
console.log(this.id + " has size " + this.size +

, and is a " + this.constructor.name) ;

document.getElementById ("squares") .appendChild (this.
return this;

el);

}i

window.onload = function() {
var mySquare new Square ("mySquare",
mySquare.display () .color ("green") ;
mySquare.el.onclick function () {
mySquare.bigger (50) .color ("red") ;

100) ;

I g
i

All of the values in a square object are either properties or methods, which means we could change them at

any time. Forinstance, you could write:

OBSERVE:

mySquare.size

200;

...and that would change the size property of the mySquare object, but the square in the web page wouldn't

getany bigger.

Justchanging the si

ze property of a square doesn't affect the <div> element (stored in the el property) at all.

Unless you call the bigger() method ofa square, no changes will be made to the size of the <div> in the

page.

You could also do this:

OBSERVE:

mySquare.el

document.createElement ("p") ;

...because if the element that represents the square isn't set up correctly (by calling the display() method), the



square won't appear in the page.

Now, you probably wouldn't make these mistakes, butif you give your Square code to a friend, and your
friend doesn't quite understand how to use it correctly, all kinds of things could go wrong.

So developers like to create objects that protect an object's inner workings, and provide a simple interface for
other developers to use to manipulate the object. An interface is a public view of an object that hides its inner
workings, but lets the person using the object work with it.

Forinstance, we might want to allow someone to create a square, but rather than controlling the display of the
square, have the square handle that privately so that a square is only displayed once. (Right now, you could
call display() twice.) We might want to protect the el property so that no one can change it. We might want to
control the color and the amount by which a square grows each time internally within the square object, and
only allow the user of a square object to "grow" the square.

An Example

That's pretty abstract, so let's take a look at an example. We'll modify our Squares example, but start from
scratch with a new file. Go ahead and create a new file and add this code:



CODE TO TYPE:

<!doctype html>
<html>
<head>
<title> Squares with API </title>
<meta charset="utf-8">
<style>
.square {
background-color: lightblue;
cursor: pointer;
}
.square p |
padding-top: 35%;
text-align: center;
-webkit-user-select: none;
-moz-user-select: none;
-ms-user-select: none;
user-select: none;

}

</style>
<script>
function Square (size) {
var initialSize = size;

var el = null;
var id = getNextId();

this.grow = function() {
setBigger (10) ;
setColor ("red");

}i

var self = this;
display () ;

function setBigger (growBy) {
if (el) {
size += growBy;
el.style.width = size + "px";
el.style.height = size + "px";

function setColor (color) {
if (el) {
el.style.backgroundColor = color;

function display() {

el = document.createElement ("div") ;
el.setAttribute ("id", id);
el.setAttribute ("class", "square");

el.style.width = size + "px";

el.style.height = size + "px";

el.innerHTML = "<p>" + id + "</p>";

el.onclick = self.grow;
document.getElementById ("squares") .appendChild(el) ;

function getNextId() {
var squares = document.querySelectorAll (".square");
if (squares) {
return squares.length;
}

return 0;




}

window.onload = function() {
var squarel = new Square (100);
var square?2 = new Square (200);

var growButton = document.getElementById ("growButton");
growButton.onclick = function() {

squarel.grow () ;

square2.grow () ;

}s

}i
</script>
</head>
<body>
<form>
<input type="button" id="growButton" value="Grow">
</form>
<div id="squares"></div>
</body>
</html>

= Save this in your JAdvJS folder as squaresAPIL.html, and P™®VI®W 5% \When you click on a square, that
square grows; when you click on the Grow button, both squares grow.

Let's take a closerlook atthe code.

OBSERVE:

function Square (size) {
var initialSize = size;
var el = null;
var id = getNextId() ;

this.grow = function() {
setBigger (10) ;
setColor ("red") ;

b

window.onload = function() {
var squarel = new Square (100);
var square2 = new Square (200);

var growButton = document.getElementById ("growButton") ;
growButton.onclick = function() {

squarel.grow() ;

square2.grow() ;

b

};

First, notice that we now have only one public property in the Square () constructor: a method grow(). What
do we mean by "public" here? Well, think back to how constructors work. When you call a function like
Square() with new, the constructor creates a new object instance with any properties and methods you add
to itusing this in the constructor. In this example, we add only one property to the object being created by the
Square() constructor: the grow() method. So, that's the only property the resulting object will contain.

So what happens to all that other stuff after the object's created? How can we use the variables and the
functions in the square object if they go away after the Square() constructor has finished executing?

Those are really great question. We'll answer them in detail in the nextlesson. The shortanswer is: a closure.
Some of the other "stuff" in the constructor is accessible after Square() is complete and has returned a new
square object because it's saved in a closure. Don't worry about that now; justkeep itin the back of your



mind, and know that the variables and functions encapsulated with the object are available even after the
constructor has completed.

Private Variables

All the values that we created as properties before are now variables:

OBSERVE:

function Square (size) {
var initialSize = size;
var el = null;
var id = getNextId();

These variables are private. You can't access them by writing something like:

OBSERVE:

squarel.id

..in your code that creates the square objects. Try it. See what happens if you try to access one of these
variables.

CODE TO TYPE: Update your code in squaresAPl.html to add the following JavaScript code

window.onload = function() {
var squarel = new Square (100);
var square?2 = new Square (200);

console.log(squarel.id);

var growButton = document.getElementById ("growButton");
growButton.onclick = function() {

squarel.grow () ;

square2.grow () ;

b

}i

= and PreVIeW % g4 check the console: "undefined.” square1 doesn't have an id property, so the value
ofsquare1.id is undefined.

Once you've tested this code, go ahead and remove the line you added.

These variables are now accessible only inside the constructor function. They are not accessible by users of
the square objects, so we say they are private. We use the initialSize variable to keep track of the initial size
ofthe square (we can change the size of the square using this.grow(), so we might wantto know what the
original size was in case we need itlater). We'll use the el variable to hold the <div> element (once we create
itin the display() function) and id to hold a unique id for the square, which we'll generate using getNextId().

Private Functions

The Square() constructor doesn't take an id (unlike the version in the previous lesson); instead, we generate
an id in the constructor based on how many squares are in the page already. We use a nested function,
getNextld(), to generate the nextid. Let's examine this function more closely:



OBSERVE:

function Square (size) {
var initialSize = size;
var el = null;
var id = getNextId() ;

function getNextId() ({
var squares = document.querySelectorAll (".square") ;
if (squares) {
return squares.length;

}

return 0;

}i

To setthe value of the id variable to the nextid (thatis, a number thatis no longer being used as an id by any
of the existing squares), we call getNextld(). This function firstgets all the existing elements with the
class "square" from the HTML page using document.querySelectorAll(), which then returns an array of
elements (if any exist). If we have no squares yet, the array will be empty, and so the length is 0, and the next
id should be 0. Similarly, if we have one square in the page, then the length of the array is 1, and the nextid
should be 1, and so on.

Again, note that the function getNextld() is notaccessible to code that creates and uses square objects.
This nested function is private and can be accessed only within the constructor function.

We set the id of the square as it's being created when the constructor function runs, and we don't need
getNextld() at all after the object has been created.

A Public Method

So far, the variables (initialSize, el, and id), and the function (getNextld()) that we've looked at have all
been private. The next function, grow(), is a public method of the object. That means that the method is added

to the object created by the constructor, and that the code that creates and uses the square object can call the
method.

OBSERVE:

function Square (size) {
var initialSize = size;
var el = null;
var id = getNextId();

this.grow = function() {
setBigger (10) ;
setColor ("red") ;

b

function getNextId() {
var squares = document.querySelectorAll (".square");
if (squares) {
return squares.length;
}

return 0;

This method is the public interface of the square object thatis exposed to the restofthe code. You can use it
to interact with a square object after it's been created. In order to make a square get bigger, call the grow()
method. The details are handled by the square object.

The grow() method calls two other private functions: setBigger() and setColor(). Both these functions are
nested in the constructor, so they are accessible to the grow() method, but notaccessible to any code



outside of a square object. You can't call square1.setBigger(10) to make a square bigger; you must call
square1.grow() instead.

OBSERVE:

function Square (size) {
var initialSize = size;
var el = null;
var id = getNextId();
this.grow = function() {
setBigger (10) ;
setColor ("red") ;

}s

function setBigger (growBy) {
if (el) {
size += growBy;
el.style.width = size + "px";
el.style.height = size + "px";

}

function setColor (color) {
if (el) {
el.style.backgroundColor = color;

}

function getNextId() {
var squares = document.querySelectorAll (".square");
if (squares) {
return squares.length;

}

return 0;

Both setBigger() and setColor() check to make sure thatthe el variable has been initialized
correctly (which we'll do in the display() function), and then modify the style of the <div> elementto grow
the square and make sure it's gotthe right color, red.

Notice that we call two private functions from a public method. Even though the square objects created by the
constructor have only one property, the method grow() (because of the closure we mentioned earlier) has
access to the setBigger() and setColor() functions.

Also notice that the functions setBigger() and setColor() have access to the private variable, el (also
because of the closure). So we can manipulate the value of a private variable by calling a public method. But
we can't manipulate that private variable from outside the object. That gives you (as the creator of this
Square() constructor, and the square objects that are made from it) greater control over how those objects
are used.

Acessing a Public Method from a Private Function

At this point, we've initialized our three private variables, and defined a public method, grow(). Now, we need
to create the <div> element that will represent the square in the page.

To do that, we'll call the display() function. This is a nested function that first creates a new <div> element for
the square, and then sets various properties to make the square the correct size and color.

We also set up the click handler for the <div> in this function. When you click on a <div> for a square, we want
the square to grow, so we call the grow() method of the square object we're using. You might think we could
write the display() function like this:



OBSERVE:

function display() {
el = document.createElement ("div") ;
el.setAttribute ("id", id);
el.setAttribute ("class", "square");
el.style.width = size + "px";
el.style.height = size + "px";
el.innerHTML = "<p>" + id + "</p>";
el.onclick = this.grow;
document .getElementById ("squares") .appendChild(el) ;

However, when you call a nested function inside an object, this is set to the global window object, not the

object the function is in. So, how do we refer to "this" object from inside the display() method?

We save the value of this in another variable, self (you can call this variable whatever you want, but by
convention it's usually called self orthat. It's a good idea to stick with this convention to make it easier for
other programmers to understand your code). Once we've saved the value ofthis in self, we can call

display(), and now display() can refer to the object's grow() method using self.grow:



OBSERVE:

function Square (size) {
var initialSize = size;
var el = null;
var id = getNextId();

this.grow = function () {
setBigger (10) ;
setColor ("red") ;

}i

var self = this;
display () ;

function setBigger (growBy) {
if (el) {
size += growBy;
el.style.width = size + "px";
el.style.height = size + "px";

}

function setColor (color) {
if (el) {
el.style.backgroundColor = color;
}
}

function display() {

el = document.createElement ("div") ;

el.setAttribute ("id", id);

el.setAttribute("class", '"square");

el.style.width = size + "px";

el.style.height = size + "px";

el.innerHTML = "<p>" + id + "</p>";

el.onclick = self.grow;

document.getElementById ("squares") .appendChild (el) ;
}

function getNextId() {
var squares = document.querySelectorAll (".square");
if (squares) {
return squares.length;
}

return 0;

When you click on a square, the grow() method is called on the object stored in self, which is the square
object that was created when you assigned the value of self to this. self is a private variable, and like the
other private variables and methods, itis accessible internally to the square object, even though it's not
accessible by the code using the square object.

Let's examine the contents of the square objects we create in the window.onload function by adding a
couple ofconsole.log()s to the code:



CODE TO TYPE: Update your JavaScript code in squaresAPlL.html:

window.onload = function() {
var squarel = new Square(100);
var square2 = new Square (200);

console.log (squarel) ;
console.log(square?) ;

var growButton = document.getElementById ("growButton");
growButton.onclick = function() {

squarel.grow() ;

square2.grow () ;

}:

}i

= and PrEVIEW % |n the console, the two square objects are displayed (Chrome browser):

¥ Square {grow: function}

» grow: functionm () {
F__r : Sguare

¥ Square {grow: function}
» grow: functionm () {
F_r _: Sguare

You can see that the only property (that we added) in each square objectis the grow() method.

Clicking on a square causes that square to grow, because we call the grow() method of the square on which
you click.

The call to the square's grow() method is setf up in the display() method, butthe method isn't called until you
actually click on a square. In order to allow you to see more explicitly that you can call the grow() method ofa
square using the square1 and square2 objects, we setup a form with one button, Grow, that calls the
grow() method on both square objects:

OBSERVE:

window.onload = function () {
var squarel = new Square (100);
var square2 = new Square (200) ;

var growButton = document.getElementById ("growButton") ;
growButton.onclick = function() ({

squarel.grow() ;

square2.grow() ;
};

}i

First, we get the button element from the page, and add a click handler function to the button.
The click handler calls the grow() method of both square1 and square2. Because grow() is a public
method, thatis, a property of the object we are creating with the constructor, this method is accessible to code
outside the object.

Encapsulation and APIs

So, a square object has a lot of internal components that are not accessible to the "outside world." These are
all the private variables and functions we've defined in the Square() constructor.

The one public method, grow(), that a square has is its interface: the point of interaction between the square
and the rest ofthe code. The only method you're allowed to call from outside the square is grow(). We call
this interface an Application Programming Interface, or AP| for short. When you see the term APl used in
software systems, it refers to the set of properties and methods that determine how software components
should interact with each other.



We encapsulated all the private things we don'twant code outside a square to be able to interact with: the id,
the element object representing the square, the initial size, and the functions used to create and manipulate
the square. These private properties are notin the API; they're hidden and protected so they can't be used
outside the square objects.

Encapsulation is a language mechanism for restricting access to an object's components. In some
languages, like Java, we have keywords that specify which pieces of an object are private or public. In
JavaScript, we don't have keywords to help us do this, but we can accomplish encapsulation by making
variables and functions private to an object using the technique we've covered in this lesson. We sometimes
refer to this technique as information hiding, because we're hiding the details of how an objectis implemented
to protectitfrom being used in the wrong way.

The advantage to encapsulation and providing an APl to an object like a square is thatit prevents code thatis
using the square from setting the internal state of the object to an invalid state. We are unable to modify the id
of the square, or the element that represents the square in the page—both of which would disrupt how the
square works—because those values are now protected from outside manipulation.

In JavaScript, the mechanism we use to encapsulate data is not perfect. For instance, you could easily
change the grow() method of a square by writing:

OBSERVE:

squarel.grow = 3;

..and break your squares! Yet encapsulation lets us hide most of the details of how a square works, so thatin
order to use a square, we only have to know one thing aboutit: to grow it, we call the grow() method.
Everything else is handled for us. Hopefully you'll know better than to change the public interface of an object
by setting the properties to something else.

Let's review. We defined a Square() constructor that creates new square objects with one public method, grow(), and various
private variables (sometimes called private "members") and methods. Any properties and methods, forinstance grow(), that
are added to the object at construction time (either through the constructor, or through the object's prototype) will be accessible
to code that uses the object. Any variables and functions that are defined in the constructor, like id and display(), will not be
accessible to code outside the object. The interface (API) for our square objects is the grow() method: this is the only method
that code outside the square objects can call.

Defining an interface for your objects is particularly importantif you're writing code that you're sharing with others. Perhaps
you're working on components for a product at work and other members of your developer group will be using your
components. Or perhaps you're developing a library, like jQuery, that you want to make available online. By encapsulating the
details of how an object works and providing a simple interface for using the object, you'll be making your objects easier to
understand and easier to use.

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.



http://creativecommons.org/licenses/by-sa/3.0/legalcode

Closures

Lesson Objectives

When you complete this lesson, you will be able to:

e create and use a closure to "remember" values.
e explain how a closure is created.
e use aclosure to store a value for a click handler.

Closures

In the previous lesson, you learned about encapsulation and information hiding. All of that functionality is possible
because of a feature of JavaScript: closures. Closures appear to be relatively straightforward, yet they can be really
difficult to wrap your head around. This entire lesson is devoted to closures: what they are, how they work, and when to

use them.

Making a Closure

We've mentioned closures before, now it's time to uncover the mystery that surrounds them. We'll start with
some basic examples and then come back to a couple of examples from the previous lessons to see how
we've used closures in the past.

Create a new file add this code:

CODE TO TYPE:

<!doctype html>

<html>

<head>
<title> Closures </title>
<meta charset="utf-8">
<script>

function makeAdder (x, y) {
var adder = function() {
return x + y;

}r

return adder;

}

var f = makeAdder (2, 3);
var result = f£();
console.log ("Result is: " + result);

</script>
</head>
<body>
</body>
</html>

= Save this in your JAdvJS folder as closure.html, and PTeVIeW 55 Open the console (reload the file if
necessary) and you'll see, "Resultis: 5."

In this code we've got a function that returns another function. You may remember from an earlier lesson that
functions are first-class values; that is, you can return a function from a function, justlike you can return values
like 3 or "string." The function make Adder() returns a function, adder(), that adds two values and returns the
result. We've named the function adder() inside make Adder(), but when we return it from makeAdder(), we
name itf(). So, in order to call the returned function, we use f(). (We could use the same name for the
function in both places, but for this lesson we want to have a way to identify the function when it's defined, and
the function when it's called.)



The two values that we want to add together are passed to the made Adder() function as arguments when we
call it. The function adder() doesn't take any arguments. Instead, adder() adds together the two numbers
passed into makeAdder(). So, how does this work?

Local variables (including parameters of functions) disappear after the function within which they are defined
is done executing. So, while the parameters x and y are defined when the function adder() is created, when
we call it later, using the name f(), x and y are long gone. So how does calling f() return the (correct) value,
57 It's seems like f() somehow "remembers" the values of x and y which were defined when f() was created
(as adder()).

Well, that's exactly what happens. The function f() "remembers" the values of x and y through a closure. Let's
step through the execution of this code to see the closure in the JavaScript console.

First, open the file closure.html in the Chrome browser, and add a breakpointto the line of code where we
call makeAdder():

8 00

Closures

< CH O .com/Adv]S/closure.html

P —
% Elements Resources Network( Sources')'imeline Profiles Audits Console
[ closure.html x e | v
» Watch Expressions
v Call Stack
v Scope Variables

<script>

™ closure.html:16

tion() { B

returT X+ Y; » XHR Breakpoints
» Event Listener Breakpoints
» Workers

(Click here to add the breakpoint. » ¥y A

var f = makeAdder(2, 3);
var result = f();
console.log("Result is: " + result);

</script>
Q @ {} Linel, Columnl

Add a breakpoint, click the Sources tab, and then open closure.ht ml (from the left pane). Click on the line
number next to the line of code where you want to add the breakpoint (in our version, that's line number 16).
The breakpoint appears under the Breakpoints section in the right pane.

Now, reload the page and click the Step into button twice. This is the third button from the left of the right
pane, with a little arrow pointing down on top of a period:



06
e J Closures

€« X fi | D {Adv)S/closure.html

Paused in debugger N

% Elements Resources Network |Sources| Timeline Profiles Audits Console

| closure.html = |\t )T vo Paused
ToRTERE . * Watch EXpressions + c
[ Step into button. v Call Stack

function

var adder = function() {
return x + y; nONYmo u!

b v Scope Variables

vLocal
return adder; »adder: function () {
T »this: Window
x: 2
v: 3
var f = makeAdder(2, 3); » Global Window
var result = f(); .

console.log("Result is: " + result);

~Breakpoints
™ closure.html:16

</script> var f = makeAdder(2, 3);
</head> » DOM Breakpoints
<body> » XHR Breakpoints
</body> » Event Listener Breakpoints
</html> » Workers

g,> q @ {} Linel, Columnl

We're now on the line where we return adder(). Look in the right pane under Scope Variables. The local
variables that are defined inside make Adder(), including the two parameters, x and y, as well as the adder()
function. These are all local variables because they are defined within make Adder().

Click Step into twice more; we're now stopped on the line where we call f() (we haven't executed this line
yet). f is a global variable (if you open Global under Scope Variables in the right pane, you'll see it defined as
a global variable, which is the global window object).

06 -
e *Closures

& X f | DO JAdvIS/closure.html

Paused in debugger Y

* Elements Resources Network |Sources| Timeline Profiles Audits Console

@ closure.html x ~ Tt b Paused
TErEEE » Watch Expressions + e
v Call Stack

function makeAdder(x, y) {
var adder = function() {
return x + y; v Scope Variables
}; »Global Window

v Breakpoints
return adder; ™ closure.html:16
¥ var f = makeAdder(2, 3);
» DOM Breakpoints
» XHR Breakpoints
» Event Listener Breakpoints
» Workers

var f = makeAdder(2, 3);
var result = f();
console.log("Result is: " + result);

</script>
</head>
<body>
</body=>
</html>

g,> q @ {} Linel, Columnl

Click Step into once more, so that we call f() and stop just before we return the result of adding x and y:



06
e _J Closures

€« X [

fAdv]S/closure.html

Paused in debugger N

Closures!

* Elements Resources Network |Sources| Timeline Profiles Audits Console \

[I*] closure.html x

oo T I

function makeAdder(x, y) {
var adder = function() {

return x + y;

+;

return adder;
}

var f = makeAdder(2, 3);
var result = f();
console.log("Result is: " + result);

</script>
</head>
<body=>
</body=>
</html>

g,> q @ {} Linel, Columnl

~ Yt e
» Watch Expressions
v Call Stack

(anonymous fuhction)
¥ Scope Varighiles
vLocal

pthis:

v(Closure
x: 2

v Breakpoints
™ closure.html:16
var f = makeAdder(2, 3);
» DOM Breakpoints
» XHR Breakpoints
» Event Listener Breakpoints
» Workers

Paused
+ e

closure.html:17

Window

Under Scope Variables, in Local, you see something called Closure. Inside that, you'll see two variables: x
and y, with their values set correctly to 2 and 3—the arguments we passed into make Adder() earlier. This is
the closure, where f() gets its two values to add together.

Step into twice again to execute the line of code, return x + y, and return from f(). The closure disappears:

06
e _J Closures

€« X [

[Adv]S/closure.html

Paused in debugger N

% Elements Resources Network |Sources| Timeline Profiles Audits Console

[ closure.html =

~—owT I

function makeAdder(x, y) {
var adder = function() {
return x + y;
};

return adder;

}

var f = makeAdder(2, 3);
var result = f();

console.log("Result is: " + result);

</script>
</head>
<body>
</body=>
</html>

2, a @ {} Linel, Columnl

CIRARRL
» Watch Expressions
v Call Stack

v Scope Variables
»Global

v Breakpoints
™ closure.html:16
var f = makeAdder(2, 3);

» DOM Breakpoints

» XHR Breakpoints

» Event Listener Breakpoints
» Workers

Click Resume script execution to complete the script execution.

What is a Closure?

Now you've made a closure, but what exactly is a closure?

Paused
+ c

Window

To understand a closure, you need to remember how scope works. In the earlier lesson on scope, we talked



about how the scope chain is created when you call functions. The scope chain is a series of scope objects
containing the values of the variables in a function's scope. For global functions (thatis, functions defined at
the top level), we have justtwo scope levels: the local scope (the scope within the function) and the global
scope. When you call a function and refer to a variable, we get the value for that variable first by looking in the
local scope and, if we can't find it there, we look in the global scope.

Now, recall that when we call a nested (or "inner") function, we have three scope levels: the scope ofthe
nested function, then the scope of the function containing the nested function, and finally the global scope.

In our example, we created a nested function named adder():

OBSERVE:

function makeAdder (x, y) {
var adder = function() {
return x + y;

iy

return adder;

}

var f = makeAdder (2, 3);
var result = f£();
console.log ("Result is: " + result);

Inside adder(), we refer to two variables, x and y. These variables are defined in the make Adder() function,
so they are notlocal to adder(). If we just called adder() from inside make Adder() (for example, if we
changed the line return adder to adder()), you'd see thatin order to figure out the values of the variables x
and y, we'd use the scope chain. We'd look for those values in the scope of adder() first, but we wouldn'tfind
them there so we'd look for those values in the scope of make Adder(), and we'd find them there.

However, we're not calling adder() from inside make Adder(); we're returning adder() from makeAdder().
When we return the adder() function, it comes along with a scope object: an object that contains the variables
that are in the scope of adder() when adder() is created. Thatincludes the two variables x and y. This object
is essentially the same as the scope object of make Adder() that was created for the scope chain. It's the
context within which adder() is created.

This objectis the closure. A closure is an object that captures the contextin place when a function is created.
The closure "remembers" all the variables that are in scope at the time the inner function is created. If we just
call the inner function right away, the closure gets thrown away when the containing function ends, butif we
return thatinner function, the closure comes along with it:



Wihewn we defive the adder function:
When we defive adder,

adder - wmakepdder scope | — we add Hre makeAdder
- scope 1o the scope
_[?c_‘ﬂ? ________________________ :_{____________________2_ _________ clhain becavse adder
[Scope] . y 3 is defined within

makeAdder (that
is, adder is a nested

Y
o
[
=
3
&
L]
=
(Y

Punction).
window [Object]
document [Object]
When we retun Hie adder function:

When we veturn
adder > adder Closwe — adder, any Vaviables
[Closure] . x 2 'PVOW\ e makeAdder

--------------------------------- scope that are used
y 3 within adder ave

saved i the closure,

When we call that function later and look for the values of the variables it refers to, if we don't find those values
in the function itself (thatis, they aren'tlocal variables), we look in the closure:

When we execute Hhe £ function:
£ (adder) > Activation Object
[Scope] . this window
[Teieeacay N -
--------------------------------- | When we call f, Tite
[Scope] £ (adder Closure s closure is added 1o the
- 2 scope chain. It is added
................................. in hront of any other
g 3 scope objects, but after
Hre activation object.
> alobal scope
I TeseEd |
document [Object]

So the closure becomes part of the scope chain when you call a function.

The closure looks a lot like the scope object that's added to the chain when we call a nested function from its
containing function (for example, if we called adder() from inside make Adder()). Although here, we use the
closure instead of the scope object because we're calling the returned function (f()) after the containing
function has returned, so we can't use the normal scope chain to find the values of the variables in f(); we
have to use the closure instead. We've "captured" the scope, or context, within which the nested function was

created in the closure so we can refer to the variables long after the containing function has completed
execution.



Playing with Closures

Let's play with closures a bit so you can see how they work. First, let's prove that only variables that are
actually referenced by an inner function are added to a closure. Modify closures.html as shown:

CODE TO TYPE:

<!doctype html>

<html>

<head>
<title> Closures </title>
<meta charset="utf-8">
<script>

function makeAdder (x, y) {
var z = 10;
var adder = function() {
return x + y;

}i

return adder;

var f = makeAdder (2, 3);
var result = f£();
console.log("Result is: " + result);

</script>
</head>
<body>
</body>
</html>

= and PrevieW % |n the console, open the Sources tab, and look at closure.html. Clear the previous
breakpointand add a breakpointto the line where we return the result of adding x and y (inside adder()), like

this:

8 00

( Closures

€« X i [0

(Adv]S/closure.html

Paused in debugger ™

% Elements Resources Network |Sources| Timeline Profiles Audits Console

[I*] closure.html x

<html lang="en">

<head>
<title> Closures </title>
<meta charset="utf-8">
<script>

return x + y;

+

return adder;

}

var f = makeAdder(2, 3);
var result = f();

Q @ {) Linel, Columnl

~ Yt e
» Watch Expressions
v Call Stack

(anonymous function)
v Scope Variables

vClosure
x: 2
v: 3

v Breakpoints
™ closure.html:11
return x + y;
» DOM Breakpoints
» XHR Breakpoints
» Event Listener Breakpoints
» Workers

closure.html:18

Reload the page. The execution will stop at the breakpoint, so you can inspect the closure. Notice that even
though we've added a local variable z to make Adder(), that variable is notincluded in the closure. Why?



Because it's notreferenced by adder(), so it's not needed in the closure.

Next, let's prove that only non-local variables are added to a closure:

CODE TO TYPE:

<!doctype html>

<html>

<head>
<title> Closures </title>
<meta charset="utf-8">
<script>

function makeAdder (x, y) {

var z = 10;
var adder = function() {
var x = 10;

return x + y;

}i

return adder;

var f = makeAdder (2, 3);

var result = £();

console.log("Result is: " + result);
</script>

</head>

<body>

</body>

</html>

L‘z‘ and Preview

(3]
e (6] € Closures

€« X fi O

{Adv]S/closure.html

“# preview. In the console, open the Sources tab, and look at closure.html:

Paused in debugger y

% Elements Resources Network |Sources| Timeline Profiles Audits Console

[I*] closure.html x
=neEdu~

<title> Closures </title>
<meta charset="utf-8">
<script>

function makeAdder(x, y) {

var z = 180;
var adder = function() {
var x = 180;

return x + y;

+

return adder;
}

var f = makeAdder(2, 3);
var result = f();
console.log("Result is: " + result);

Q @ {) Linel, Columnl

~ Yt e
» Watch Expressions
v Call Stack

(anonymous function) closure.html:19

¥ Scope Variables
vLocal
»this: Window
X3
v: 3
»Globa
v Breakpoints
™ closure.html:12
return x + y;
» DOM Breakpoints
» XHR Breakpoints
» Event Listener Breakpoints
» Workers

Now, only y is in the closure. The local variable x shadows the parameter x in make Adder(), so x is no
longer needed in the closure—we'll always use the value of the local variable if we refer to x in adder(). Also,
look atthe console (click on the Console tab); the resultis now 13 instead of 5.



What do you think will happen if we refer to z in adder()?

CODE TO TYPE:

<!doctype html>

<html>

<head>
<title> Closures </title>
<meta charset="utf-8">
<script>

function makeAdder (x, y) {

var z = 10;
var adder = function() {
var x = 10;

return x + y + z;

}i

return adder;

var £ = makeAdder (2, 3);
var result = f£();
console.log("Result is: " + result);

</script>
</head>
<body>
</body>
</html>

= and PrevVIeW % |n the console, open the Sources tab, and look at closure.html. Notice we're now
adding z to x and y. Add a breakpoint to the line where we return the result of adding x, y and z (inside

adder()), like this:

(3]
e (] { Closures

&« X f D /Adv)S/closure.html

Paused in debugger ~

% Elements Resources Network |Sources| Timeline Profiles Audits Console

~ Yt e
» Watch Expressions
v Call Stack

[*]| closure.html x
<title> Closures </title>
<meta charset="utf-8">
<script>
) (anonymous function) closure.html:19
function makeAdder(x, y) { v Scope Variables
var z = 10; vLocal
var adder = function() { »this: Window
var x = 180; x: 10

return x + y + z; vClosure

6 Window

return adder; A :
v Breakpoints

}
™ closure.html:12

var f = makeAdder(2, 3); return x + y + z;
var result = f(); » DOM Breakpoints
console.log("Result is: " + result); » XHR Breakpoints

» Event Listener Breakpoints

e W el mem

Q @ {) Linel, Columnl

Reload the page. When the execution stops, you'll see thatz is now included in the closure, because it's
referenced by adder().

What do you think will happen if you remove the declaration of z, but leave the reference to z in adder()? Try it



and see!

Each Closure is Unique

Each time you call make Adder(), you'll get a function back that adds two numbers together. Let's make
another function, g(), that adds together the numbers 4 and 5:

CODE TO TYPE:

<!doctype html>

<html>

<head>
<title> Closures </title>
<meta charset="utf-8">
<script>

function makeAdder (x, y) {
“ar——16+
var adder = function() {
Far—s———730+
return x + y—+—=%;
}i

return adder;

}

var f = makeAdder (2, 3);
var result = f£();
console.log("Result is: " + result);

var g = makeAdder (4, 5);
var anotherResult = g();
console.log("Another result is: " + anotherResult);

</script>
</head>
<body>
</body>
</html>

= and PrEVIEW S n the console, you'll see that the result of calling g() ("Another result") is 9. Now, open
the Sources tab, and look at closure.html. Add a breakpoint at the line where we return the resultfrom
adder() (line 10 in our version), and reload the page. The firsttime the execution stops at the breakpoint,
we're calling f(), so you'll see the values 2 and 3 for x and y in the closure. Click Resume script execution
again. Now when execution stops at the breakpoint, we call g(), so you'll see the values 4 and 5 for x and y in
the closure.

In other words, f() and g() get separate closures containing different values for x and y. You can call f()
again after calling g(), and you'll still get the right answer. When f() and g() are created, the values ofx andy
are different, so each function has a separate closure, each with different values for the variables thatare in it.
Remember, a closure captures the context of a function when that function is created.



(3]
e © " Closures

&« X f D Adv)S/closure.html

Paused in debugger

iy

% Elements Resources Network |Sources| Timeline Profiles Audits Console

[I*] closure.html x
<script>

function makeAdder(x, y) {
var adder = function() {
return x + y;

+;

return adder;

}

var f = makeAdder(2, 3);
var result = f();
console.log("Result is: " + result);

var g = makeAdder(4, 5);

var anotherResult = g();
console.log("Another result is: " + anothe!

Q @ {) Linel, Columnl

At Tt e Paused
» Watch Expressions + c
v Call Stack

(anonymous function) closure.html:21

Paused on a JavaScript breakpoint.

v Scope Variables
vLocal

»this: Window
v Closure

Window

v Breakpoints

™ closure.html:10
return x + y;

» DOM Breakpoints

» XHR Breakpoints

irkmmae Denslsmaimen

Closures Might Not Always Act Like You Expect

Now, try this:

CODE TO TYPE:

<!doctype html>

<html>

<head>
<title> Closures </title>
<meta charset="utf-8">
<script>

function makeAdder (x, y) {
var adder = function() {
return x + y;
}i
x = 10;
return adder;

var f = makeAdder (2, 3):;
var result = f();
console.log ("Result is: " + result);

var g = makeAdder (4, 5);
var anotherResult = g();

</script>
</head>
<body>
</body>
</html>

console.log("Another result is: " + anotherResult);

=l and PrEVIEW 2 ) ook atthe resultin the console. The result of calling f() is now 13, and the result of
calling g() is now 15. If you still have the breakpoint atline 10, you'll see that the closure now contains the
value 10 for x in both functions. That's because a closure is a reference to an object. an object that contains



the values of the variables in the scope of the function associated with the closure. So, when we call
makeAdder() the firsttime, we create the function adder() by defining itin make Adder(). The closure is
created, and adder() gets a reference to that closure object, which contains a property named x with the value
2 (the value we passed into makeAdder()). Before we return the adder() function value, we change the value
ofthe property in the closure object associated with adder(). adder() still points to the same closure object,
but we've changed the value in that closure object, so later, when we call f() (which is justanother name for
the adder() function we created when we called make Adder(2, 3)), we look up the value of x and find 10
instead of 2:



We defivie Hre adder function:

adder > wakebdder scope
[Scope] . x 2
[Scope] - y 2
> @lobal scope
window [Object]
document [Object]
Then we change the valve of x:
x = 10;
Which changes the value in the scope object:
adder - wakebdder SCope
[Scope] . x 10
> Global scope
window [Object]
document [Object]

=0 wihen we vetun Hie adder function,
Hae valve of x in Hre closuve is 10:

addev Closure

 J

adder

[Closure] . x 10

This is really important to understand. so look itover a couple oftimes. If you don'tremember that the closure



associated with a function is an objedt, and so what's stored in the function object as the closure is actually a
reference to an object, you could run into problems. If you change that object affer you've created the function,
that function will use the new values in the object, not the original ones.

Closures for Methods

Closures work for methods (which are justfunctions in objects) too:

CODE TO TYPE:

<!doctype html>

<html>

<head>
<title> Closures </title>
<meta charset="utf-8">
<script>

function makeAdder (x, y) {
var adder = function() {
return x + y;
}i
=70
return adder;

}

var f = makeAdder (2, 3);
var result = f£();
console.log ("Result is: " + result);

var g = makeAdder (4, 5);
var anotherResult = g();
console.log ("Another result is: " + anotherResult);

function makeObject (x, y) {
return {
z: 10,
adder: function() {
return x + y + this.z;
}
}i

var o = makeObject (2, 3);
var result2 = o.adder();
console.log ("Result in o is: " + result2);

</script>
</head>
<body>
</body>
</html>

= and PreVIEW ¥ |n the console, you see that the value of result2 is 15.

Go ahead and experiment by setting a breakpoint at the return in the new make Object() function (line 28 in
our version). When you execute the code with the breakpointin place, you'll see that when we call o.adder()
the value of this is the object o (good!) and that object contains two properties: the method adder() and the
property z that has a value of 10. The closure contains the values 2 and 3 for x and y. We don't need the value
ofthis.z in the closure, because we get that value from the object that contains method we're calling—thatis,
o.



(3]
e © _J Closures

€« X D

fAdv]S/closure.html

Paused in debugger

iy

* Elements

Resources Network |Sources | Timeline Profiles Audits Console

[I*] closure.html x

var g = makeAdder(4, 5);
var anotherResult = g();
console.log("Another result is: " + anothe!

function makeObject(x, y) {
return {
z: 1@,
adder: function() {
return x + y + this.z;

}
};
}

var o =
var result2 = o.adder();
console.log("Result in o is: " + result2);

makeObject(2, 3);

Q @ {) Linel, Columnl

Using Closures

At Tt e
» Watch Expressions
v Call Stack

Paused
+ c

(anonymous function) closure.html:34

v Scope Variables
vLocal
vthis: Object
»adder: function () {
z: 1@ .
» : Object
v Closure
X: 2
v: 3
»Global
v Breakpoints
™ closure.html:28

return x + y + this.z;

» DOM Breakpoints
» XHR Breakpoints

Window

Now you know how closures work, so when are they useful. After all, it's not often that we create functions that
return other functions in our everyday code. Let's look at a few examples of where closures come in handy.

Using Closures to Create Private Data

We'll start by creating a function that counts. Create a new file and add this code:

CODE TO TYPE:

<!doctype html>

<html>

<head>
<title> Counter </title>
<meta charset="utf-8">
<script>

function makeCounter () {
var count = 0;
return function() {
count = count + 1;
return count;

}r

var count = makeCounter (

’

)
console.log ("Counter: " + count());
console.log("Counter: " + count());
console.log("Counter: " + count());
console.log("Counter: " + count());
console.log ("Counter: " + count());

</script>
</head>
<body>
</body>

</html>




= Save this in your JAdvJ S folder as counter.html, and P™VI®W 2 Open the console (and reload the
file if necessary) and you see:

OBSERVE:

Counter:
Counter:
Counter:
Counter:
Counter:

s w N

This is kind of cool because we've used a closure to encapsulate the counter variable, and the process of
counting. In other words, the counter variable, count, is totally private, and the only way to incrementitis to
call the function count (). The count variable exists only within the closure for the function count(), so no
one can come along and change the value of the counter by doing anything other than calling count().

Closures as Click Handlers

So far we've looked at examples thatreturn a function from a function, and seen how the function thatis
returned comes along with a closure object. Another way to use a function after the context within which the
function is created has gone away is to assign a function to an object property; for instance, like when we
assign handlers for events to a property in an object, like a <div>. Create a new file to look ata common use
of closures—and a common mistake that goes along with it:

CODE TO TYPE:

<!doctype html>
<html>
<head>
<title> Closures for divs </title>
<meta charset="utf-8">
<style>
div {
position: relative;
margin: 10px;
background-color: red;
border: lpx solid black;
width: 100px;
height: 100px;
}

</style>
<script>
window.onload = function() {
var numDivs = 3;
for (var i = 0; 1 < numDivs; i++) {
var div = document.getElementById("div" + 1i);
div.onclick = function() {
console.log("You just clicked on div number " + i);
}i
}
}i
</script>
</head>
<body>

<div id="div0"></div>
<div id="divl"></div>
<div id="div2"></div>
</body>
</html>

= Save this in your /AdvJ S folder as divsClosure.html and Fr&VI8W s yoy see three red squares.
Open the console and try clicking on each of the squares. Each time you do, you'll see "You justclicked on
div number 3." Can you figure out why we get"3" each time, instead of the correct value for each <div> (thatis,
0, 10r 2)? Think about it for a few minutes before you go on.



First, we've got three different <div>s in the page, with the ids "div0," "div1," and "div2." We want to add a click
handler to each <div>. Each click handler will do the same thing: display a message showing the number
corresponding to the number in the id of the <div>. So if you click on the "div0" <div>, you'll see the message,
"You justclicked on div number 0," and likewise for <div>s 1 and 2.

So, in the code, we create a for loop to iterate through the three <div>s and add a click handler to each. We
use the loop variable i for the number of the <div> so we can display that number in the click handler. Notice
thatthe click handler function that we assign to each of the <div> objects references the variable i, and i is
notdefined in the click handler function—it's defined in the scope surrounding the click handler
function (thatis, in the window.onload function).

So what happens? A closure is created! When we store the function value of the click handler function in
the onclick property, that function comes along with a closure that contains the variable i. Later, when you
click on the <div>, the value of i will be found in the closure associated with the click handler function.

OBSERVE:
window.onload = function() {
var numDivs = 3;
for (var i = 0; i1 < numDivs; i++) {

var div = document.getElementById("div" + 1i);
div.onclick = function() {
console.log("You just clicked on div number " + i);

¥

}i

That all sounds good, butit's not working right. We see 3 every time we click on any of the <div>s instead of
the correct number for the <div>. Why?

Well, remember, a closure associated with a function is an object, and the function contains a reference to that
closure object. So if we change the value of a variable that's captured in the closure after we create that
closure, we're changing the value of the variable that will be used when we call that function later.

In this example, each time we set the click handler function to the onclick property of a <div>, the value of
i will be correctinitially, butthen we change the value ofi the nexttime through the loop, which changes the
value in the closure we just made.

Ourloop stops iterating when the value ofi is 3. So when we call any of those click handler functions later
(like when you click on a <div>), you see the value of i that was in place at the end of the loop, not the value of
i thatwas in place when the closure was created originally.

Try using the console to add a breakpointin the code to inspectthe closure. Add the breakpointon the line in
the click handler function where we use console.log() to display the <div> information. Click on a <div> to
see the closure when the click handler function is called.

We can fix this by creating another closure. Let's see how:

CODE TO TYPE:
window.onload = function() {
var numDivs = 3;
for (var i = 0; i < numDivs; i++) {

var div = document.getElementById("div" + 1i);

o 1 ale e O e e
|\ VA i 5 L G i E O | N U S B A S E A B R W T

hl h]

VALl
OfT T TOTT

2 = 1 ] <l 2 1o L 2 )
You—fust—eticked—eon—divrumber —i—
—_—

div.onclick = (function (divNum) {
return function() {
console.log("You just clicked on div number " + divNum) ;

b (1) 7

}i

= and Preview 5 Ty clicking on each <div> again. Now you get the correct number values for each <div>.



How does this work?

OBSERVE:

window.onload = function () {
var numDivs = 3;
for (var i = 0; i < numDivs; 1i++) {
var div = document.getElementById ("div" + 1i);
div.onclick = (function (divNum) {
return function() {
console.log("You just clicked on div number " + divNum) ;
};
P (1)

}i

When we assign the value of each <div>'s click handler function, we do so by executing another
function thatreturns a function value for the click handler. This function executes right away. lt seem a
little odd because we're putting the function expression in parentheses first, and after the function expression,
we have another set of parentheses:

OBSERVE:

div.onclick = (function(divNum) { ... }) (1) ;

We're calling the function we just created. (We'll talk more about this pattern of creating and calling a
function in one step in a later lesson).

Putting the function expression in parentheses makes sure the function expression is treated as an
expression, and not a function declaration. Also, we pass the value ofi into the function we're calling. The
value gets passed into a variable divNum, which is used by a function we're returning from the function
we just called. When we return a function from a function, we create a closure that contains any
variables referenced by the the function being returned that are defined in the function that contains
it. In this case, both ofthese functions are anonymous; we're not actually giving them names like we did
before with make Adder() and adder(), but that's okay. The closure works in exactly the same way. In this
case, the closure associated with the the function being returned contains the value of divNum. Note
that this value does not change. Even if the value of i changes, the value of divNum in the closure does not
(remember that arguments are passed by value to functions, so divNum gets a copy of the value in i).

The function that's returned is assigned to the div.onclick property, so itis available once the
window.onload function has completed. That means that the values in that function's closure are also
available, so when you click on a <div>, you'll get the correct number for that <div> because you're accessing
the divNum variable in the closure. Add a breakpointto the code on the console.log() line again (line 23 in
our version), and inspect the closure when you click on a <div>. You'll see the variable divNum and the
correct number for the <div> you clicked on:



O
e (5] Closures for divs

« CH D JAdv]S/divsClosure.html

Paused in debugger ~

* Elements Resources Network |Sources Timeline Profiles Audits Console

[ divsClosure.html x SRR
height: 1@@px; » Watch Expressions
} v Call Stack
</style>
<script>
window.onload = function() {
var numDivs = 3; v Scope Variables
for (var 1 = 8; 1 < numDivs; i++) { vLocal
var div = document.getElementById("div" + 1i); »this: div#divl
div.onclick = function(divNum) { v(Closure
return function() { divhum: 1
console.log("You just clicked on div numb *Global Window
H ¥ Breakpoints
i) ™ divsClosure.html:23
' console. log("You just clicked on div..
» DOM Breakpoints
» XHR Breakpoints +
» Event Listener Breakpoints
» Workers

HH
</script=
</head>
<body=
<div id="div@"></div=>
<div id="div1"></div=>
<div id="div2"></div>
</body>
</html>

B,>@ a @ {} Linel, Column1

Using a closure like this to capture the current value of a variable by passing it to a function that returns
another function is a common technique used by JavaScript programmers (and one we'll look at more in the
nextlesson).

Where We've Used Closures Before
Before we end the lesson, let's look at two examples from earlier in the course where we used closures.

First, take another look at the example, AdvJdS/functions3.html from the Functions lesson. (If you don't
have this file, no worries—you can copy itin and save itas AdvJS/functions3.html.)




CODE TO TYPE: This code is in the file functions3.html in your AdvJ S/ folder

<!doctype html>
<html>
<head>
<title> Returning Functions </title>
<meta charset="utf-8">
<script>
function makeConverterFunction (multiplier, term) {
return function (input) {
var convertedValue = input * multiplier;
convertedValue = convertedValue.toFixed(2);
return convertedValue + " " + term;
}i
}

var kilometersToMiles = makeConverterFunction (0.6214, "miles");
console.log("10 km is " + kilometersToMiles (10));

var milesToKilometers = makeConverterFunction(l.62, "km");
console.log("10 miles is " + milesToKilometers(10));
</script>
</head>
<body>
</body>
</html>

We created this example to show how to return a function from a function. The function we return from
makeConverterFunction references the two parameters: multiplier and term. When we call the returned
function later (as kilometersToMiles() oras milesToKilometers()), we'll use the closures associated
with the two functions that captured the context—the values of the parameters when the function was defined
and returned—to determine the values of those variables.

Try adding a breakpointinside the function that's returned (within makeConverterFunction) so you can
see the closures in action.

Let's also look again atthe squaresAPIl.html example from the Encapsulation and APlIs lesson. In that
lesson we talked about encapsluation and information hiding. We used a constructor, Square(), to create
objects, but kept some of the data in the object being created private by not assigning values to properties of
the object. Instead we used local variables and nested functions. (Again, if you no longer have the file
squaresAPIl.html in your AdvJ S/ folder, feel free to copy itin from here and save itas
AdvJS/squares.html))



EncapsulationAndAPIS.html#an_example

CODE TO TYPE: This code is in the file squaresAPlL.html in your AdvJS/folder

<!doctype html>
<html>
<head>
<title> Squares with API </title>
<meta charset="utf-8">
<style>
.square {
background-color: lightblue;
cursor: pointer;
}
.square p |
padding-top: 35%;
text-align: center;
-webkit-user-select: none;
-moz-user—-select: none;
-ms-user-select: none;
user-select: none;

}

</style>
<script>
function Square (size) {
var initialSize = size;

var el = null;
var id = getNextId();

this.grow = function() {
setBigger (10) ;
setColor ("red");

}i

this.reset = function() {
setBigger (initialSize - size);
setColor ("lightblue") ;

b

var self = this;
display();

function setBigger (growBy) {
if (el) |
size += growBy;
el.style.width = size + "px";
el.style.height = size + "px";

function setColor (color) {
if (el) {
el.style.backgroundColor = color;

function display () {
el = document.createElement ("div");
el.setAttribute ("id", id);
el.setAttribute ("class", "square");
el.style.width = size + "px";
el.style.height = size + "px";
el.innerHTML = "<p>" + 1id + "</p>";
el.onclick = self.grow;
document.getElementById ("squares") .appendChild(el) ;

function getNextId() {
var squares = document.querySelectorAll (".square");
if (squares) {




return squares.length;

}

return 0;

}

window.onload = function() {
var squarel = new Square (100);
var square?2 = new Square (200);

var growButton = document.getElementById ("growButton");
growButton.onclick = function() {

squarel.grow () ;

square2.grow () ;

}i

}i
</script>
</head>
<body>
<form>
<input type="button" id="growButton" value="Grow!">
</form>
<div id="squares"></div>
</body>
</html>

The closure created by the Square() constructoris a little less obvious, butit's there. In this.grow(), we refer
to two nested functions, setBigger() and setColor(). Both are nested functions which means they are local
variables in the Square() constructor. Just like any other kind of local variable, like initialSize orid, the
values of these functions will disappear once Square() completes executing.

Because we reference these functions in this.grow(), the functions are added to the closure for the
this.grow() method. In addition, any local variables that are in scope for these two functions are also added
to the closure. Why? Because those values might be needed when we call square1.grow() and
square2.grow(), otherwise, we'd get a reference error. So both of the function values that are used directly by
this.grow(), as well as any other variables in scope for those two functions, are added to the closure. You
can inspect the closure by adding a breakpointto one ofthe lines of code in this.grow(). When you click the
Grow button to call the this.grow() method of the square, you'll hit the breakpoint, and you'll be able to see
the closure:



OB [squares

=y |Em-m‘nﬁmdvjs,’squares.html

Paused in debugger Ir 7w

% Elements Resources Network |Sources | Timeline Profiles Audits Console

[ squares.html x | IR S L

» Watch Expressions

v Call Stack

function Square(size) { Square.grow squares.html:29

:::: ;TLEJ‘::?{?E = Sdze; growButton.onclick squares.html:81

var id = getNextId(}; Paused on a JavaScript breakpoint.

v Scope Variables
vLocal

»this: Saquare
setColor("red"); vClosure

b »el: div#@.square
id:

this.reset = function() { ,égﬂ?a]s'ﬁﬁgf.é 1ee

setBigger(initialSize - size); »setBigaer: function setBiaaer(growB..
setColor("lightblue"); rsgtColggé function setColor(color) {
size:

H »Global Window

var self = this: v Breakpoints
display(): ™ squares.html:29
setBigger(1@);
function setBigger(growBy) { » DOM Breakpoints
if (el) { » XHR Breakpoints
size += growBy; » Event Listener Breakpoints
el.style.width = size + "px"; » Workers
el.style.height = size + "px";

this.grow = function() {

Q @ {} Linel, Columnl

Whenever you create a function that references variables from the surrounding context, a closure is created. If you return that
function from a function, or assign itto an object property, so the function is available outside of the context within which itwas
created, the closure comes along with the function. This means the function can "remember" the values of the variables it
references. This is where the closure gets its name: a closure "closes" over the variables in scope when the function is created
so it can keep them available for the function later, after the original context disappears. Think of closures as functions plus
scope. If you understand scope, you'll understand closures too.

Note that closures aren't necessary for global variables, because global variables have global scope. They are available
everywhere in your code, so there's no need to "remember" them in a closure.

The primary use for closures is to create private data, like we did with the counter example and with the squares example. You'll
see closures used this way frequently (for example, in libraries like jQuery and Backbone js).

Closures are notoriously tricky to wrap your head around, so take some extra time to review the lesson again and make sure
you've gotit. Use the Chrome console to inspect the closures you create to help you understand what's going on.

Copyright © 1998-2014 O'Reilly Media, Inc.



This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.



http://creativecommons.org/licenses/by-sa/3.0/legalcode

The Module Pattern

Lesson Objectives

When you complete this lesson, you will be able to:

use an Immediately Invoked Function Expression, lIFE, to create a local scope for your code.

explain how variables are accessible after the IIFE has completed by using a closure.

use the Module Pattern in the implementation of jQuery.
use the Module Pattern to create modules of code.

Module Pattern

The Module Pattern has emerged as one of the most common patterns you'll see in JavaScript. It's used by most
JavaScript libraries and plug-in scripts, including libraries like Backbone.js, jQuery, YUI, Prototype, and more. You can
use the pattern to keep code organized, reduce the number of globals you use, encapsulate structure and behavior,
and provide a simple API for your objects. All this is possible because of closures, which you learned aboutin the
previous lesson. In this lesson, we take a look at the Module Pattern: whatitis, how it works, how it's related to
closures, and how it can help you organize your code.

IIFE or Immediately Invoked Function Expressions

To understand the Module Pattern, you need to know how closures work (you've done that), how to use
objects with closures to create private and public data (you've done that), and whatit means to create a public
APl for an object (you've done thattoo). The only piece you don'tknow yet (although we did see one in the
previous lesson)is the Inmediately Invoked Function Expression.

Let's take a look at the simplestkind of IIFE you can create:

CODE TO TYPE:

<!doctype html>
<html>
<head>
<title> IIFE </title>
<meta charset="utf-8">
<script>
(function () {
var x = 3;
PO
</script>
</head>
<body>
</body>
</html>

= Save this in your JAdvJSS folder as iife.html, and P™®YI®W 5 vou won't see anything yet because so
far, our lIFE doesn'tdo much. We need to make itdo something, butfirst, let's explore exactly what's going on
in the code:

OBSERVE:

(function() {
var x = 3;

1) ()

Let's break down this code into three parts. First, look at the function expression. This is an anonymous
function (a function without a name), and all it does right now is initialize a variable x to 3.

Second, we have parentheses around the function. We put them there because we wantto execute the
function,immediately, which is the third part. We need the parentheses around the function to make ita



function expression rather than a function declaration, because JavaScript will create a function declaration
automatically when it sees the function keyword when you use it at the global level. If you try to execute a
function declaration immediately, you'll get a syntax error (try itand see: remove the parentheses and you'll
get a syntax error). By putting the parentheses around the function, we create a function expression, which
we can then execute immediately by adding parent heses after the function.

That code is almost the same as this code:

OBSERVE:

function foo () {
var x = 3;

}

foo () ;

Here, we have a function declaration for the function foo. Then we call the function immediately after
defining it.

Both these pieces of code accomplish essentially the same thing: they create a context (or scope) for the
variable x. x is a local variable; itis available only inside the function scope. However, there is one key
difference: in the first version, we never name the function, so no changes are made to the global object. The
code executes without affecting the global object atall (it doesn't add any new variable or function definitions).
In the second version, we do change the global object: we add the name foo to itand the value offoo is set
to a function.

The first version of the code is an IIFE. The IIFE is used to create a context with a function within which you can
declare variables, define functions, and execute code without affecting the global variables in your JavaScript.
An lIFE is named as such because we call (invoke) the function in the same expression where we define it. In

other words, we call the function expression immediately.

An lIFE can be pretty useful. For instance, you could create an IIFE that sets up a click handler for an element
in your page. Modify iife.html as shown:

CODE TO TYPE:

<!doctype html>
<html>
<head>
<title> IIFE </title>
<meta charset="utf-8">
<script>
(function() {
FEE———
var message = "I've been clicked!";
window.onload = function() {
var div = document.querySelector ("div");
div.onclick = function() {
alert (message) ;
}i
}i
1 O;
</script>
</head>
<body>
<div>click me!</div>
</body>
</html>

= and PreVIEW 5 The words click me! appear in your page. Click on the text, and you see the "I've been
clicked!" alert.

We've accomplished some work in the page (set up a click handler), but again, we've done it without adding
anything new to the global object exceptfor a value for the window.onload property. However, the other
variables, x, message, and div are all private to the IIFE, and disappear once the function has finished
executing when the page is loaded.

We can, however, click on the text and see the message after the IIFE has long gone. How? With a closure, of



course! Whenever we create a function that references variables defined in the surrounding context of that
function, and make that function available for use outside of that context, a closure that contains the values of
the variables that function needs comes with it so the function "remembers" those values.

Inside our lIFE, we assign a click handler function to the onclick property of the <div> element. This
function references the variable message, and because the function is available after our IIFE goes away
(because we saved itin the <div> element's onclick property, and the <div> element doesn't go away), we get
a closure along with the function. That closure contains the variable message.

OBSERVE:

(function () {
var message = "You've been clicked!";
window.onload = function() {
var div = document.querySelector ("div") ;
div.onclick = function() {
alert (message) ;

¥

107

IIFEs are useful for getting work done while having minimal effect on the global scope. Additionally, you can
use them to setup code to run later by assigning values to properties of objects, like the <div> element, that
do stick around after the IIFE is gone.

The Module Pattern

Now you know everything you need to know in order to use the Module Pattern. Let's look atan example ofa
small program thatis structured using this pattern. Create a new file as shown:



CODE TO TYPE:

<!doctype html>
<html>
<head>
<title> Module Pattern </title>
<meta charset="utf-8">
<script>
var counterModule = (function() {
var counter = 0;

return {
increment: function() {
counter++;
}I
decrement: function() {

counter--;
}I
reset: function() {
counter = 0;
}I
getValue: function() {
return counter;
}
bi
IDNON

window.onload = function() {
counterModule.increment (

(

(

) ;
)
).

’

counterModule.increment
counterModule.decrement
counterModule.increment () ;
console.log(counterModule.getValue()) ;
counterModule.reset () ;

}i

</script>
</head>
<body>
</body>
</html>

= Save this in your JAdvJS folder as module.html, and P™®VI®W ¥ The value 2 displays in the console.

Let's examine this code more closely. First, we use an IIFE to create an object that manages a variable,
counter. Unlike our previous IIFE example, we actually return a value from the function: an object that
contains four methods to manage the counter. However, the counter is not part of the object that's returned.
Instead, it's a local variable to the IIFE, which means thatit's a private variable. Because the object's methods
reference this variable, when the objectis returned, we get a closure with each of the methods that contains
the counter variable (and note that each closure references the same variable, so ifone of the methods
changes the value of counter, it will change for the entire object).

Next, we name the object that's returned. We give itthe name counterModule. This is a global variable so
it's available to the restof our program to use, but note thatit's the only global variable we create (other than
setting the window.onload property to a function). The counter itselfis private and accessible only using
methods in the counterModule object.

This is the point of the Module Pattern: to minimize the number of global variables and functions you create in
your program (preferably limiting the number to just one global object that contains everything else you need).
The object you return from your IIFE contains public data and public methods, and all the private data is in the
closure associated with the object's methods. So the object acts as an APl to all the functionality the object
provides to your page. This is the "module": an independent set of functionality that contains everything
necessary to execute one aspect of the overall desired functionality in the page. In this example, our "module”
is the counter: everything you need for the counter is encapsulated within the counterModule module.

As you can see, the concepts used in the Module Pattern are all concepts we've seen before: public and



private data, an API, and closures. The pattern a way to describe how to use these concepts together to
structure your code a certain way. A pattern is a design; it's notan implementation. It's a guideline for how to
structure your code to achieve a goal. In this case, that goal is to create a context for a set of functionality that
is accessible to the page globally, but has minimal impact on the global variables in the page.

Using the Module Pattern with JavaScript Libraries

The Module Pattern is particularly useful for JavaScript libraries and widgets, because it allows you to
combine code from several different sources, knowing thatit's unlikely you'll overwrite variables from another
library by mistake. Because the module object provides a public API for managing private data, it's also
unlikely that you'll do something disastrous by accessing a variable in a way you shouldn't (if you use the API
correctly).

As an example, look athow jQuery is structured. The actual source code has some additional complexities
we won'tgo into here, butif you look at the snippet of source code below, you'll see that the authors of jQuery
use the Module Pattern to structure the code for the library. The internals of jQuery are implemented as private
variables and methods, and the library functionality for you to use is exposed through the public methods in
the jQuery object (also named $). In this case, once the jQuery object has been set up with everything it needs
inside the IIFE, rather than returning that object, the jQuery objectis assigned to two properties in the global
object: window.$ and window.jQuery (so you can refer to the jQuery module using either name):

OBSERVE:

(function( window, undefined ) {
// lots of code here

// Define a local copy of JjQuery
jQuery = function( selector, context ) {
// The jQuery object is actually just the init constructor 'enhanced'
return new jQuery.fn.init( selector, context, rootjQuery );

by
// lots more code here...
// Here is where we add the jQuery object as a global variable
// so you can access all the public properties and methods

window.jQuery = window.$ = jQuery;

}) ( window ) ;

Don'tworry about the details of the code above (which is justa tiny snippet taken from the current version of
jQuery). Just notice that the structure of the library uses the Module Pattern. Aimost every JavaScript library
outthere uses this pattern.

If you're using multiple libraries, you might find it useful to structure your own code using the module pattern,
and import the libraries into your module like this:

OBSERVE:

var myModule = (function (J$, US) {

}) (JQuery, _);

Here, we pass two arguments into our lIFE: the jQuery object (which we get when we link to the jQuery
library) and the _ object, which is the name of the global object for the Underscore library. We can alias these
two library objects by using different names for the parameters in the IIFE: J$ for jQuery and U$ for
Underscore. You might just like these names better; but sometimes you can do this to avoid name clashes
within your module.

A Shopping Basket Using the Module Pattern

Here's another example of using the Module Pattern—a shopping basket module:


http://code.jquery.com/jquery-latest.js
http://underscorejs.org

CODE TO TYPE:

<!doctype html>

<html>
<head>

<title> Shopping Basket: Module Pattern </title>
<meta charset="utf-8">

<script>
var basket = (function() {
var basket = {};

var items = [];

//

// Add a new item to the basket.

// If item already exists, increase the count of existing item.
// Returns: number of that item in the basket.

//
function addItem(item, cost) {
for (var i = 0; i < items.length; i++) {
if (items[i].name == item) {
items[i].count++;
return items[i].count;
}
}
items.push ({ name: item, price: cost, count: 1 });
return 1;
}
//

// Remove an item from the basket
// If item has more than 1 in basket, reduce count.
// If no more items left after removing one, remove item completely.
// Returns: number of that item left or -1 if item you tried
// to remove doesn't exist.
//
function removelItem (item) {
for (var i = 0; i < items.length; i++) {
if (items[i].name == item) {
items[i].count--;
if (items[i].count == 0) {
items.splice (i, 1);
return 0;
}

return items[i].count;

}

return -1;

}

//
// Compute the total cost of items in the basket.
//
function cost () {
var total = 0;
for (var 1 = 0; 1 < items.length; i++) {
total += items([i].price * items[i].count;
}

return total;

basket.addItem = function (item, cost) {
var count = addItem(item, cost);
console.log("You have " + count + " of " + item + " in your basket."

bi

basket.removeltem = function (item) {
var count = removeltem(item);
if (count >= 0) {




console.log("You have " + count + " of " + item + " left in your

basket.");
} else {
console.log("Sorry, couldn't find " + item + " in your basket to
remove.");
}
}i
basket.cost = function() {
var totalCost = cost();
console.log ("Your total cost is: " + totalCost);

}s

basket.show = function() {

console.log ("====== Shopping Basket =========");
for (var 1 = 0; 1 < items.length; i++) {
console.log(items[i].count + " " + items[i].name + ", " + (items

[i] .price * items[i].count));
}
console.log (" ");

}i

return basket;

DN

window.onload = function() {
basket.addItem ("broccoli™, 1.49);
basket.addItem("pear", 0.89);
basket.addItem("kale", 2.38);
basket.addItem ("broccoli™, 1.49);
basket.show () ;

basket.cost () ;
basket.removeltem ("broccoli") ;

basket.cost () ;
}i

</script>
</head>
<body>
</body>
</html>

= Save this in your JAdvJS folder as basket.html, and PT®VIeW 5% |n the console, this output is
displayed:

OBSERVE:

You have 1 of broccoli in your basket.
You have 1 of pear in your basket.

You have 1 of kale in your basket.

You have 2 of broccoli in your basket.
====== Shopping Basket =========

2 broccoli, 2.98

1 pear, 0.89

1 kale, 2.38

Your total cost is: 6.25
You have 1 of broccoli left in your basket.
Your total cost is: 4.76

In our module, we have a couple of private variables: basket (the object we return as the value for the

module), and items (an array that holds the items in your basket). We also have a few private functions that
handle the functionality of managing the shopping basket: additem(), removeltem(), and cost(). Once the

module is created, none of these private variables or functions will be available to the user of the module,
except through the public APl which is created by returning the basket object from the IIFE and storing the



resulting value in the basket global variable.

Notice that we use the same name for the local variable for the basket object and the global variable to store
the finished module. This is perfectly fine.

The public APl is the collection of methods in the basket object: basket.addltem(),
basket.removeltem(), basket.cost(), and basket.show(). These methods can be used by code that
uses the basket module.

Look through the code and make sure you understand how itworks and how it's structured using the Module
Pattern. Keep in mind that the pattern is a design guideline, not a specificimplementation, so it's expressed in
code in different ways depending on the needs of the specific module you're implementing.

Why Not Just Use an Object Constructor?

So, why would you use the Module Pattern when you could just use an object constructor and achieve the
same thing, like this?:

CODE TO TYPE:

<!doctype html>

<html>

<head>
<title> Counter Constructor instead of Module Pattern </title>
<meta charset="utf-8">

<script>
function CounterModule () {
var counter = 0;

this.increment
counter++;

function () {

}i
this.decrement = function() {

counter--;

bi

this.reset = function() {
counter = 0;

}i

this.getValue = function() {

return counter;
}i
}i

var counterModule;

window.onload = function() {
counterModule = new CounterModule () ;
counterModule.increment () ;
counterModule.increment () ;
counterModule.decrement () ;
counterModule.increment () ;
console.log(counterModule.getValue()) ;
counterModule.reset () ;

b7

</script>
</head>
<body>
</body>
</html>

= Save this in your JAdvJS folder as module2.html, and Pr®VIEW % |y the console, the same output
displays as with our previous version of the counter module: 2.

Here, we use a constructor function, CounterModule(), to create exactly the same kind of object that we did
before: an object with some public methods to manage the counter, which is a private variable (and
accessible only through those public methods).



The difference between the two approaches is in the way we create the counter. If we use a constructor
function, we need to create a counterModule using new CounterModule() (which is fine). Using new to
create the object or using the Module Pattern to create the object accomplishes essentially the same thing.

You'd use the Module Pattern when you want just one version of the object. When we use the Module Pattern,
we know that the user of the module can'tinstantiate multiple instances of the object, because there's no
constructor. When we use a constructor, we can get many instances of the object. In the case oflibraries like
jQuery, Underscore, and others that use the Module Pattern, we know we'll only want one of each of these
objects (having more would be pointless). So, whether you use the Module Pattern or an object constructor
really depends on how you plan to use the object (or objects) you create. Do you need justone? Use the
Module Pattern. Do you need many? Use a constructor.

In this lesson, you learned about the Module Pattern: a design guideline for how to structure your code to reduce the number of
global variables you use, manage private data and functionality, and create a public API (through one global object) to access
that private data and functionality. Because JavaScript has one global object that's shared by all the code that you write in a
page, as well as any code you link to (both external libraries and your own additional code), this is a popular pattern that helps
to reduce name clashes and keep the global namespace "clean." This is particularly important for large projects where you may
notalways know the names that are being used in other parts of the code.

Copyright © 1998-2014 O'Reijlly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.



http://creativecommons.org/licenses/by-sa/3.0/legalcode

The JavaScript Environment

Lesson Objectives

When you complete this lesson, you will be able to:

e explore your browser's JavaScript extensions.

e distinguish between the core language and the extensions provided by the environmentin which your code runs.
e compare how the browser runs your code depending on where you put that code in a page.

e describe and distinguish the two phases the browser uses to execute JavasCript code.

e explain how the eventloop works.

e create and handle multiple events.

JavaScript Runs in an Environment

In this course, we've been focusing on the language features of JavaScript, but there's more to it because JavaScript
runs in an environment. Most of the time, that environment is the browser. We've seen a little of the interaction between
JavaScript and the browser when we used JavaScript to update the DOM by adding new elements or styling elements,
or getting userinput from a form. In this lesson, we look closer at how JavaScriptinteracts with its environment, and
things you need to be aware of when running JavaScript in the browser.

The Core Language, and the Environment's Extensions

JavaScript was created in 1995 (eons ago in internet time) specifically to run in the Netscape browser;
JavaScriptis still primarily a language for the browser. It has gotten beyond the browser though, most notably
as a scripting language for PDF documents, OpenOffice, DX Studio, Logic Pro to name a few. In addition,
JavaScriptcan now be used as a server-side language running in environments like Node js.

JavaScriptruns in an environment, and that environmentis usually the browser. Depending on the
environment in which JavaScriptis running, there will be ways you can alter the language to manipulate that
environment. If you're running JavaScript in the browser, you get extra "stuff" along with the language basics,
that allows you to get data from the page, manipulate the content of the page, and even change the style of the

page.

You can think of JavaScript as a language that's composed of two parts: the core language and the
extensions that are supplied by the environment in which it's running. The core of the language are the syntax
and semantics that control actions like how you define variables and functions, how you write loops, how you
call functions, how scope works, and so on.

The extensions to the language are the parts that are supplied by the environment. Typically these parts are
objects that provide a JavaScriptinterface for you to use in that environment. For the browser, this refers to
elements like the document object, the window object, and all the properties and methods thatcome along
with those objects.

Inspect these objects in the console:

INTERACTIVE SESSION:

> window
Window {top: Window, window: Window, location: Location, external: Object, chrom
e: Object}

Try this in Chrome. Twirl down the arrow next to the result, and you'll see a long list of the various properties
ofthe window object:



A
800 /[ Index of j~BethjOST/Ady| x =

il

<« C A  [9 localhost/~Beth/OST/Adv]S/ 5| »

* Elements Resources Network Sources Timeline Profiles Audits | Console!

> window

v Window {top Window, window: Window, location: Location, external: (
Infinitv: Infinity
» Analvserflode; function AnalyserNode() {natlve code] }
»Array: functign Arrav() { [native code
» ArravBuffer: function ArravBuffer() }
» Attr: function Attr() { [native code .
» Audio: function HTMLAudioElement() { [native codel] }
» AudioBuffer: function AudioBuffer() { [native codel
» AudioBufferSourceNode: function AudloBufferSourceNode{% 1 [native

native codel }

» AudioDestinationNode; function AudioDestinationNodel() native co
»Audiolistener: function AudioListener() { [native code

» AudioNode: function AudioNode() {natlve code]

» AudioParam: functlon AudioParam() { [native code
»AudioProcessinaEvent: function AudioProcessingEvent() { }natlve co
» AutocompleteErrorEvent: function AutocompleteErrorEvent() { [nativ

»BarProp: function BarProp() { [native code .

» Befo L adEvent: function BeforeLoadEvent( lnatlve code] }
»BiguadFilterNode: function BiauadFilterNode( [native code] }
»Blob: function Blob()_ { [native codel

»Boolean: function Boolean() { [native codel }

» CDATASection: function CDATASection() { [native codel }

»CSS: €SS , ,

» CSSCharsetRule: function CSSCharsetRulef) {natlve code] }
»CSS5FontFaceRule: function CSSFontFaceRule( [native code] }

» CSSHostRule: function CSSHostRule() { [native codel

» CSSImportRule: function CSSImDortRule( [native codel }

» CSSMediaRule: function CSSMediaRu e(i native code
-CSSPaqc%ukc: function CSSPageRule() native code{ .

» CSSPrimitiveValue: function CSSPrimitiveValue() { [native code] }
» C5SRule: function CSSRule() { [natlve code]

» CSSRulelist: function CSSRulelist() [native code] . _
» LS55ty leDeclaration: function (€555t 1eDeclarat10n( native code
» C555tvleRule: function CSSStvleRule native code

» CSSStyleSheet: function CSSStVleSheet{ [native codel }

» CSSValue: function CSSValue() { [native code]

-C::#a.ucLlsh: function CSSValuelList() { [native code] }

» CSSVariablesM ap: function CSSVariablesMap native code l

» CS5ViewportRu function CSSViewportRule native code

» CanvasGradient: function CanvasGradlent(} native code

» CanvasPattern: function CanvasPattern() native code]
-Canvas%cndcrlnutsn19x123: function_ CanvasRenderinaContext2D() {m
» ChannelMergerNode: function ChannelMeragerNode() { [native code

» ChannelSplitterNode: function Channels?llttequde( { [native code
»CharacterData: function CharacterDatal( [native code
»ClientRect: function ClientRect() { [native code]

»ClientRectlist: function ClientRectList() { [native codel }

» Clipboard: function Clipboard() } {natlve code]

»Close Ev nt: function CloseEvent( natlve code r

e Fiimemd s mm CAamms s Tonmdadism mmedal

[0

Y= Q O <top frame> y <page context> v % @I | Errors Warnings L¢ %

Every browser will give you some representation of the window object if you type this into the console, but
they might be a little different from one another.

Now try the document object:

INTERACTIVE SESSION:

> document

#document
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<html>...</html>

Again, twirl down the arrow nextto #document so you can see a display of the document object. The
document object represents your web page, so when you open itup, you see the content of your page.

document has lots of properties and methods you can use to access the content of your page, like



getElementByld() and others. To see which properties document has, type "document" with a period
following it:

INTERACTIVE SESSION:

> document.

If you do this in Chrome, Safari, Firefox or IE, you'll see a pop up window that shows you all the properties of
document thatyou can type next:

800 Index of /~Beth/OST/Adv| > | L

&« C # [ localhost/~Beth/OST/Adv]S/ a0

» Elements Resources Network Sources Timeline Profiles Audits | Console
> document
v#document
r<html>.</html>

> document.ATTRIBUTE_NODE
ATTRIBUTE_NODE
CDATA_SECTION_NODE
COMMENT_NODE
DOCUMENT_FRAGMENT_NODE
DOCUMENT_NODE
DOCUMENT_POSITION_CONTAINED_BY
DOCUMENT_POSITION_CONTAINS
DOCUMENT_POSITION_DISCONNECTED
DOCUMENT_POSITION_FOLLOWING
DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC
DOCUMENT_POSITION_PRECEDING
DOCUMENT_TYPE_NODE
ELEMENT_NODE
ENTITY_NODE
ENTITY_REFERENCE_NODE
NOTATION_NODE
PROCESSING_INSTRUCTION_NODE
TEXT_NODE
URL
__defineGetter__
__defineSetter__
__lookupGetter__
__lookupSetter__
activeElement
addEventListener
adoptNode
alinkColor
all

0, = Q Gan_c_llcr)r_s_______ S o —rors Warnings Loc %

Scroll down through the list and you'll see many properties you're familiar with, as well as many you're not
familiar with yet.

The document objectis a property of the window object



INTERACTIVE SESSION:

> window.document

#document
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<html>...</html>

All of the browser-related things you'll do with JavaScript are properties of the window object. We say the
window objectis the global object or head object, because it gives you access to all the other objects you'll
use to manipulate the browser environment. Try typing the names of these properties in the browser and see
what you get (we're showing results from Chrome here):

INTERACTIVE SESSION:

> window.localStorage

Storage {2269ae85-adeb-40cb-aef0-c43e9b4940ea popup openPosition: "{'"top'":184,
"left":270}", 235486a4-943d-45a7-alf4-31dlb4débael popup openPosition: "{"top":1
84,"left":314}", 34376391-10f2-4bd7-8e24-2314ebbeeb6d popup openPosition: "{"top
":184,"left":270}", 3af686d4-efle-4bad-a302-81bf2a8c23d6 popup openPosition: "{"
top":33,"left":2}", 46c2259c-fabe-4c41-8bf7-3973fc2f678e popup openPosition: "{"
top":184,"left":270}"...}
> window.navigator.geolocation

Geolocation {getCurrentPosition: function, watchPosition: function, clearWatch
: function}
> window.JSON

JSON {}

Remember that because the window objectis the global object, it's also the default object, so to access a
property of the window object you don't have to type window. For instance, you can write window.alert() or
justalert(), window.JSON, orjust JSON.

You can also create and inspect elements rightin the console to see which properties are supported by the
various element objects in the browser. Forinstance, if you want to see the properties supported by the
<video> element, try this:

INTERACTIVE SESSION:

> var media = document.createElement ("video")
undefined
> media.

We created a <video> element using the document.createElement() method. Once we have that element
(in a variable, it's not added to the page), we can inspect it by typing "media" followed by a period. Just like
before, a popup window appears with all the various properties that the <video> element supports. There are
some different properties and methods in the listthat aren't supported by other elements, or by the
document object. Because a video objectis a DOM object, itwill inherit many methods that all element
objects have, butit has a few, like autoplay and loop, that are unique to video (and audio, which has many
ofthe same properties as video).

How the Browser Runs JavaScript Code

When JavaScript was first added to browsers, it was purely an interpreted language. To run the JavaScriptin
your web page, the browser begins interpreting and executing your JavaScript, from the top down, as the page
is loaded. Each line of your code is parsed by other code internal to the browser and then evaluated. The
browser's runtime environment contains all of your variables, functions, and so on, so ifyou declare a
variable x and give itthe value 3, the browser creates a bit of storage in that runtime environment, and stores
the value 3 there.

Interpreted languages are typically slower than compiled languages, like C, C++, Java, and C#, because they
are not converted to machine code or optimized before they are run. The browser interprets each and every
line of code as it gets to the nextline, and has to parse each line of code justas you've written it.



For this reason, JavaScriptin the browser has been notoriously slow. However, as developers began to
expand the way web pages are used, and create web pages that are more like applications than static
documents, browser developers began to see a huge advantage to making JavaScript faster. Think of
Google Maps: we want maps to run fast so we can scroll around in the map, zoom in and out, and have the
page respond quickly.

Browser developers began to build JavaScript engines into browsers that compile JavaScript code (using

"JustIn Time," or JIT, compilers), and turn itinto a special code that could be run faster by the browser. For
example, Chrome's V8 JavaScript engine compiles your JavaScriptinto machine code before the browser
executes the code. As the browser compiles your code, it can make optimizations so that the code will run
even faster.

Browsers still run your code top down (as mostruntime environments do), so how you write your code
hasn't changed. The way the browsers deal with your code has changed though, which has resulted in huge

speed increases when you run JavaScript, so now you can write huge applications in your web pages that run

fast (think of applications like Google maps and mail, Facebook, Netflix and Hulu, Evernote, Vimeo and
YouTube, and many more).

To learn more about how JavaScript engines in browsers work, check out the links on the
JavaScript Engine Wikipedia page.

' Note

Including JavaScript in Your Page

There are two ways to include JavaScriptin your page: as embedded scriptin an HTML page (using the
<script> element), and as a link to an external script. If you include your script (as an embedded scriptor as a
link) at the top of your page, typically in the <head> element, the JavaScript will be executed before the
browser interprets your HTML.:

OBSERVE:

<!doctype html>
<html>
<head>
<title> </title>
<meta charset="utf-8">
<script>
var x = 3;
</script>
</head>
<body></body>
</html>

or

OBSERVE:

<!doctype html>
<html>
<head>
<title> </title>
<meta charset="utf-8">
<script src="external.js"> </script>
</head>
<body></body>
</html>

Place your code atthe end of your page, like this:


http://en.wikipedia.org/wiki/JavaScript_engine#JavaScript_engines

OBSERVE:

<!doctype html>
<html>
<head>

<title> </title>

<meta charset="utf-8">
</head>
<body>
<div>

Other HTML here
</div>
<script>

var x = 3;

</script>
</body>
</html>

The code will run after the rest of your page has loaded and the browser has interpreted the HTML.

We used to recommend that you add your JavaScriptin the <head> of your document, but recently more
developers are recommending that you add your JavaScript at the bottom, just before the closing </body>
tag. As JavaScript gets larger (for more complex pages), it takes longer to download, parse, and execute the
JavaScript, so the user has to waitlonger to see the web page. Either way will work, but if you're writing a
complex page with large JavaScript files, you may want to test your page to see ifincluding the JavaScript at
the bottom of the file leads to a better user experience.

An advantage of having your JavaScript in an external file is that if the JavaScriptis used by multiple web
pages, the browser will cache the JavaScriptfile, so itdoesn't have to be downloaded multiple times. This is
particularly important for library files, like jQuery or Underscore.js, which are typically used for a whole web
site rather than just one page. If you use a well-known URL for the library (like the site's hosting URL, or even
a URL on Google's servers), it's likely that the user's browser already has that file cached, which will reduce
the download time even more.

To see the difference between including your code in the <head> of your page and at the bottom, try this:

CODE TO TYPE:

<!doctype html>
<html>
<head>
<title> Script Testing </title>
<meta charset="utf-8">
<script>
var div = document.getElementById("divl");
div.innerHTML = "Testing when the browser loads a script";
</script>
</head>
<body>
<div id="divl1"></div>
</body>
</html>

=l Save this in your JAdvJ S folder as testLoad.html,and P"®VI®W* Open the console. You see a
message, "Uncaught TypeError: Cannot set property 'innerHTML' of null."

Now move the script to the bottom of the page:


https://developers.google.com/speed/libraries/?csw=1

CODE TO TYPE:

<!doctype html>

<html>

<head>
<title> Script Testing </title>
<meta charset="utf-8">

Lo
CIrIPT

U
i S | Rux} o 1 hl pu] ||
—— TeSTIIg WIICTT TOoOwWSeTr—ToatS— TPt

o <l i T
T =—CoCuireITc . e T TemeiT
faul
T

</head>
<body>
<div id="divl"></div>
<script>
var div = document.getElementById("divl");
div.innerHTML = "Testing when the browser loads a script";
</script>
</body>
</html>

= and PrEVIEW 5 Now there's no errorin the console, and the page displays the message.

Because the browser evaluates the page from the top down, in the first version, the DOM is notready when
the browser executes your script. In the second version, the DOM has been built and the <div> that you are
modifying exists in the DOM, so the script works. If you prefer to put your scriptin the <head> of your
document, make sure any code thatuses or manipulates the DOM is called from within the window.onload
event handler. If you've been working with JavaScript for a while, you already know this, butit's worth
reiterating because it's important.

The JavaScript Event Loop

Once the browser has executed your code from the top down as itloads your page, it enters into an event
loop. This loop is internal to the browser. Itis basically a loop that waits for events to occur. If you move your
mouse, or click on an element, or request data from another website, an event will be generated. There are
internal browser events as well. For instance, when the browser has finished loading the page, it generates
the "load" event, which will cause your window.onload event handler to execute, if you've defined one.

When an event happens, the browser checks to see if you've defined an event handler for that event; if you
have, that function is run. Once the function is complete, the browser begins the eventloop again. This event
loop continues as long as the web page is loaded.

In this phase of execution (thatis, the phase when the browser is waiting for events and executing event
handlers), events can happen atany time, so your event handler functions run when they're needed, not at any
particular time or in a particular sequence.

You can disrupt the event handling process by writing code that takes up too much of the processing power of
your browser. Take a look atthe code below.

Feel free to type in the code below and try it, but be warned—you will probably need to
' WARNING close the browser entirely to stop the code. If you do want to try it, we recommend usinga !
' different browser from the one you're using to read the lesson. '



CODE TO TYPE:

<!doctype html>

<html>

<head>
<title> Script Testing </title>
<meta charset="utf-8">

<script>
window.onload = function() {
document.onclick = function() {

alert ("You clicked on the web page!");
}
var div = document.getElementById("divl");
for (var 1 = 0; 1 < 100000000000; i++) {
div.innerHTML += 1 + ",";
}
}
</script>
</head>
<body>
<div id="divl"></div>
</body>
</html>

= Save this in your JAdvJS folder as scriptError.html, and PT®VI®W ¥ vou may getan "unresponsive
script" dialog box, like the one below (from Firefox):

Script Testing

Script Testing u bl =

_ )(a) (@] [# ]

Warning: Unresponsive script

ellanecus ~ # Outline ~ # Resiz

A script on this page may be busy, or it may have
stopped responding. You can stop the script now, or
you can continue to see if the script will complete. 22,23,24,25,2 6, 27,23,
Script:

http:// s il Adv]S/Lesson | 4/

scriptError.html: 14

Den't ask me again

| Stop script | | Continue

Transferring data from localhost...

x

If you do, choose the option to stop the scriptand you may get control of your browser back. However, your
browser may become entirely unresponsive. In that case, you can force quit the browser on the Mac by
pressing Option+Command+Escape (all atonce), selecting the browser that's unresponsive, and
choosing Force quit. In Windows, right-click in the taskbar, select Start Task Manager, select the browser
application, and select End T ask.

Let's step through the code to see what's happening:



OBSERVE:

window.onload = function() {
document.onclick = function() {
alert("You clicked on the web page!");
}
var div = document.getElementById("divl") ;
for (var i = 0; i < 100000000000; i++) {
div.innerHTML += i + ",";
}

First, we're running all the code in the window.onload event handler. This runs once the browser has
completed loading the page, so we can access the DOM safely.

We setup a click event handler on the document. That means anywhere you click on the page will
trigger this event. Once this is setup, we get the "div1" object from the page, and then beginaloop
that will add successive integers to the content of the <div> using innerHTML. However, the loop end pointis
a very large number. Even for fast computers, this loop is going to take a long time.

Now, try clicking on the page if you want. The browser is so busy executing the loop thatitis unlikely to
recognoze the event for a while (if ever) before you see a browser error.

Change the very large number above to 10,000:

CODE TO TYPE:

<!doctype html>

<html>

<head>
<title> Script Testing </title>
<meta charset="utf-8">

<script>
window.onload = function() {
document.onclick = function() {

alert ("You clicked on the web page!");
}
var div = document.getElementById("divl") ;
for (var i = 0; 1 < 10000; i++) {
div.innerHTML += 1 + ",";
}
}
</script>
</head>
<body>
<div id="div1"></div>
</body>
</html>

= and Preview ¥ ciick on the web page as soon as itloads. You might have to wait a little while, but

you'll eventually get an alert.

The Event Queue

So, it still takes a little while for the browser to get through the loop, but eventually itdoes, and itresponds to
your click. Even if you click on the page before the loop is complete, the browser doesn't forget the event,
because whenever an eventoccurs in the browser, that eventis added to an event queue. The browser
handles events in order as they occur. The event queue ensures that even if multiple events are happening,
and some of the handlers for those events take a while to execute, the browser eventually gets to all of them
(unless an event handler takes so long that it causes the browser to display an unresponsive scriptdialog, or
if an event handler causes an error so that your browser stops executing your script altogether).

Asynchronous Programming

Suppose you write a script that sets up a click handler for a mouse click, and also sends a requestto get
more data using XHR (XMLHttpRequest, also known as Ajax). Your requestto get more data might be



initiated right away, but if it takes a while to get the data, the event handler that will be called once the data is
received won't execute for a while. In the meantime, you can click your mouse a bunch oftimes and your
mouse click event handler will execute.

The XHR request that you created to get more data is executed asynchronously. Thatis, the browser allows
you to do other things while it's waiting to get the data from the XHR request. In fact, while it's waiting for the
data, the browser goes back to executing the eventloop so itcan respond to other events. When the data you
requested with XHR is finally retrieved, your XHR event handler will be executed. Compare the way the
browser handles a synchronous loop, like we created above, with the way it handles an asynchronous
requestlike XHR: The loop jams up the eventloop, while the XHR requestdoes not.

Here's a quick example that uses XHR to fetch data for your application. ltalso sets up a click handler:

CODE TO TYPE:

<!doctype html>

<html>

<head>
<title> XHR Asynchronous Request </title>
<meta charset="utf-8">

<script>
window.onload = function() {
document.onclick = function() {

alert ("You clicked on the web page!");
}
var request = new XMLHttpRequest();
request.open ("GET", "data.json");
request.onreadystatechange = function (response) {
var div = document.getElementById("divl");
if (this.readyState == this.DONE && this.status == 200) {
if (response != null) {
div.innerHTML = this.responseText;
}
else {
div.innerHTML += "<br>Error: Problem getting data";
}
}
else {
div.innerHTML += "<br>Error: " + this.status;
}
}
request.send () ;
}
</script>
</head>
<body>
<div id="divl1"></div>
</body>
</html>

If you want to try this code tand see these events in action, = save the file in your /AdvJ S folder as
eventQueue.html. Create a file named data.json in the same folder. You can putany JSON data in the file,
like this:

OBSERVE:

[ "test data" ]

Preview ¥ preview the eventQueue.html file. [ "test data” ] appears in the web page. You can click on

the page to see the alert.

Our data is small so itdoesn'ttake much time to retrieve, so the browser will load your JSON data far too fast
for you to be able to click on the page before it does. Still, you can see from the code that we're setting up two
events: one will occur whenever you click the mouse, and the other will occur when the data in the file
"data.json" has been retrieved. We have no way of knowing which will occur first (but we can make an
educated guess because you can't click the mouse fast enough). If you never click the mouse, then the



mouse click event will never happen.

If you replace the small amount of data here with a much larger amount of data, you might be able to delay the
loading long enough to click the mouse. Give ita try if you want.

Remember, JavaScriptin the browser is event-driven; once the browser has loaded and executed your code
in the first phase (as itloads the page), the second phase responds to events, which makes your web pages
interactive.

Also keep in mind that some actions, like XHR requests, are executed asynchronously. We set up XHR event
handlers like we do other kinds of event handlers: by assigning a function to a property on an object, in this
case, the XMLHttpRequest object. The event handler is called when the data requested by the XHR request
has been returned to the browser. We don't know precisely when the event will occur, and because the
browser doesn't stop the eventloop while it's waiting for the data, we can continue to interact with the browser
and run other code.

JavaScript in Environments Other Than the Browser

You're using JavaScriptin the browser, but much of what you've learned in this course applies to JavaScript
in other environments as well..

Forinstance, if you're writing a JavaScript script for Photoshop, the main entry pointfor access to the
Photoshop environmentis the app object. For more about writing JavaScript for Photoshop, check out the
links here: http://www.adobe.com/devnet/photoshop/scripting.html. Of course, other Adobe products also
offer scripting capabilities.

Another JavaScript environment thatis rising in popularity is Node.js. Node.js allows you to run JavaScript at
the command line, and you can use Node.js to serve web pages and run web services. If you download and
install Node.js, you can experiment with it by running node ata command line. Interact with it just like you
would the JavaScript console in the browser, execpt that you won't have all the built-in browser objects;
instead, you'll have built-in Node.js objects. Here's a sample interactive session from my own computer (you
won'tbe able to reproduce this unless you install Node.js, which is not necessary for this course; we're just
showing this session in case you're interested):

INTERACTIVE SESSION:

[elisabeth-robsons-mac-pro]$% node
> var 1 = 3;
undefined
> i
3
> console.log ("1 is " + i)
i is 3
undefined
> require ("os")
{ endianness: [Function],
hostname: [Function],
loadavg: [Function],
uptime: [Function],
freemem: [Function],
totalmem: [Function],
cpus: [Function],
type: [Function],
release: [Function],
networkInterfaces: [Function],
arch: [Function],
platform: [Function],
tmpdir: [Function],
tmpDir: [Function],
getNetworkInterfaces: [Function: deprecated],
EOL: '\n' }
> os.arch{()
'x64"
> os.uptime ()
28466
>



http://www.adobe.com/devnet/photoshop/scripting.html
http://nodejs.org/api/

As you can see, the first part of this session looks just like a session in the browser's JavaScript console.

However, about half way through we write require("os"). This loads a Node.js module, which is justa library
of JavaScript code (similar to if you linked to a library like jQuery from a web page). Once we've loaded this
module, we have access to another object, os, that can give us information about the operating system on
which we're we're running Node js. JavaScript can't do this in the browser because the JavaScriptin the
browser executes in a sandbox: a special area of the browser that protects your system from any code thatis
downloaded and executed in the browser (which helps to prevent JavaScript viruses).

If you want to explore another JavaScript environment, you'll find that you can apply much of the information
you've learned so far to that environment, butyou'll also need to learn about the environment's extensions to
understand how to use JavaScript within that environment.

The JavaScript objects that browsers provide for you to manipulate the browser are based largely on specifications written by
the W3C (the World Wide Web Consortium). While most browser manufacturers have agreed that we are all better off if
browsers supportthe same features (so we don't have to write different code for different browsers), various browser makers
are always thinking up cool new features to add. Some of these features make itinto the specifications and are implemented by
the other browsers, and some do not.

All of the browser extensions we've talked aboutin this course are supported by the mostrecent versions of all the major
browsers. To use cutting-edge features that are being added into browsers, testfor those features, either by writing the test code
yourself, or by using a JavaScript library like Modernizr. Testing for features rather than a specific browser ensures that your
code will be forward-compatible: thatis, if a user doesn't have a browser that supports that feature now, they may in the future,
so your web applications will work for them.

Libraries, like jQuery and Underscore.js (and many others), can also help with browser compatibility. These libraries provide
what are called "shims" that provide fallback behavior for features that aren't supported by all browsers.

To learn more about the specifications that (largely) determine which features browsers support, check out the W3C TR page
(start atthe DOM, DOM events, and JavaScript APIs TRs and go from there). In addition, each browser maker will have
documentation on their sites about features supported by each of their individual browsers:

e Safari Developer Center
e MDN Developer Network
e Chrome Developer Site

e |E Developer Site

e Opera Developer Site

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.



http://w3.org
http://modernizr.com
http://jquery.com
http://underscorejs.org
http://www.w3.org/TR/
https://developer.apple.com/devcenter/safari/index.action
https://developer.mozilla.org/en-US/
https://developers.google.com/chrome/
http://msdn.microsoft.com/en-us/ie/aa740469.aspx
http://www.opera.com/developer
http://creativecommons.org/licenses/by-sa/3.0/legalcode

ECMAScript 5.1

Lesson Objectives

When you complete this lesson, you will be able to:

e describe the mostrecentversion of the standard on which JavaScriptis based, ECMAScript 5.1.
e use strictmode to preventcommon mistakes.

e explore new methods added in ES5.

e use object property descriptors to control access to objects.

e create objects based on your own prototypes.

The ECMAScript Standard for JavaScript

JavaScript has a convoluted history, but the good news is that all the major browsers now (mostly) support a standard
version of JavaScript. With a standard for the core language and standard for the browser extensions (as we talked
aboutin the previous lesson), working with JavaScriptis much better now than in the old days when we had to write
different JavaScript for each different browser. What a mess that was!

The standard for the core JavaScript language is described in the EMCAScript specification, maintained by the ECMA
International organization, an international, private (membership-based), non-profit standards organization for
information and communication systems. The current version of the ECMAScript standard for JavaScriptis 5.1. You
can find the specification of the standard at http://www.ecma-international.org/publications/standards/Ecma-262.htm
[PDF]. (An HTML version is also available).

Version 5.1 (which we often refer to as ES5) of the standard was completed in 2011; major browsers implement much
ofthe standard today. Fortunately, version 5.1 is completely backward-compatible with the previous version (3.1; don't
ask what happened to version 4), so you don't have to unlearn anything to learn the new stuffin version 5.1. Here's a
handy compatibility table that describes browser support for various ES5 features. We'll experiment with some of these
features in this lesson, so make sure you've gotthe mostrecent version of your favorite browser installed.

There are quite a few minor changes in the ES5 version of the language, a few interesting additions to Objects, and a
new strict mode that we'll explore. Keep in mind that the language specification is for the core language, and does not
refer to the browser extensions we explored in the previous lesson.

Strict Mode

Despite what we just said about not having to unlearn anything for ES5, there are a few things you can do in
JavaScript that you really shouldn't be allowed to do. (You haven'tbeen doing those things in this course, but
it's a good idea for you to know aboutthem.) Some of these quirks have been deprecated in ES5. That means
they are no longer supported in the language, but browsers will still let you do them (as part of the backwards
compatibility with the previous version of the standard). Here's an example:

CODE TO TYPE:

<!doctype html>

<html>

<head>
<title> </title>
<meta charset="utf-8">
<script>

myVar = "I'm not declared!";

</script>

</head>

<body>

</body>

</html>

= Save this in your JAdvJ S folder as strict.html, and P™®VI®W % Open the console and type the
command shown:


http://www.w3.org/community/webed/wiki/A_Short_History_of_JavaScript
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/ecma-262/5.1/
http://kangax.github.io/es5-compat-table/

INTERACTIVE SESSION:

> myVar
"I'm not declared!"

You see the value of the string in the variable myVar. The problem with this code is that you didn't declare the
variable myVar. As we discussed earlier in the course, this is not good. We always want you to declare your
variables. Also, try to keep the number of global variables you use to a minimum.

ES5 has introduced a new mode, called strict mode, to help you catch these errors. When you are in strict
mode, you can'tassign a value to a variable that hasn't been declared. Here's how you put your code into
strict mode:

CODE TO TYPE:

<!doctype html>
<html>
<head>
<title> </title>
<meta charset="utf-8">
<script>
"use strict";
myVar = "I'm not declared!";
</script>
</head>
<body>
</body>
</html>

L‘ﬂ and Preview
than Chrome):

“|.In the console you see this error (or something similar if you're using a browser other

OBSERVE:

Uncaught ReferenceError: myVar is not defined

In strict mode, you're notallowed to make this mistake. To fix the mistake, add the "var" keyword in front of the
variable:

CODE TO TYPE:

<!doctype html>
<html>
<head>
<title> </title>
<meta charset="utf-8">
<script>
"use strict";
var myVar = "Flmraetl am declared!";
</script>
</head>
<body>
</body>
</html>

= and PTEVIEW S 1 the console, you no longer see the error, and you can type "myVar" and see its value.

You can use "use strict" at the global level, as well as inside individual functions. If you put "use strict" atthe
global level, it affects all your code. If you putitinside a function only, it will affect justthe code in that function.
So you could put all your strict code into an lIFE, like this:



CODE TO TYPE:

<!doctype html>

<html>

<head>
<title> </title>
<meta charset="utf-8">
<script>

n ol ol
=3 TrTCtT

AR F—am—deetar
(function () {
"use strict";
innerMyVar = "I'm not declared in this function either.";

IDNON

</script>
</head>
<body>
</body>
</html>

= and PrEVIEW 5% |n the console, you'll see a reference error. You can fix it by adding "var" in front of the
variable innerMyVar.

Let's look atone other way that strict mode can help prevent mistakes:

CODE TO TYPE:

<!doctype html>
<html>
<head>
<title> </title>
<meta charset="utf-8">
<script>
(function () {
"use strict";
var innerMyVar = "I'm not declared in this function either.";

var o =
x: 3
x: 1

{
0
bi
PO
</script>
</head>
<body>

</body>
</html>

We added an object, o, and we defined the property o.x twice in the object definition. Let's see what happens

in strict mode. = and PTEVIEW 2 1n the console, you see an error (in Chrome):

OBSERVE:

Uncaught SyntaxError: Duplicate data property in object literal not allowed in s
trict mode

Previously, it was perfectly allowable to define the same property twice in an object (although nota good
idea). Try itand see what happens (you can try it by commenting out the "use strict"; line with //). In strict
mode, we can'tdo this anymore, and the browser generates an error that describes the problem.

Strict mode can help you write cleaner and better code. Strict mode will help you with other tasks as well;
check out the MDN Developer Network's strict mode page for more.

The way we tell the browser to use strict mode might seem a little odd; after all, it's just a string, "use strict."


https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions_and_function_scope/Strict_mode

Why do you think the language designers decided to do it this way?

Thhey did it this way because so that older browsers thatdon't support strict mode could safely ignore the
statement. To older browsers, "use strict" is simply a string and won't affect how your code runs atall. To

newer browsers, of course, the string causes the browser to go into strict mode. This means you can use
strict mode in your code without worrying that older browsers won't be able to run the code. However, pay
particular attention if you are linking to multiple scripts in your page. You can combine scripts if they are all

strict, or all non-strict, but you can't mix the two! Make sure you know the mode of all of your scripts use
before linking to them.

New Methods

There are a few new methods that have been added to objects in the language. Let's check outsome ofthe
mostuseful of them.

For strings, the trim() method is now part of the language. Browsers have implemented this for a while. The
useful trim() method removes white space at the beginning and ending of a string:

INTERACTIVE SESSION:

> var s =" Lots of white space here "y
undefined

> s

Lots of white space here "
> s.trim()
"Lots of white space here"

Nice! It's possible to implementa trim() function yourself, as you saw in an earlier project, butit's so much
nicer to have it builtinto the language.

There are some new array methods too:

INTERACTIVE SESSION:

> var a = [1, 2, 31;

undefined

> a

[1, 2, 3]

> a.forEach (function(x, i, a) { al[i]l] = x + 1; });
undefined

> a

[2, 3, 4]

Here, we define an array a, and then use the forEach() method to apply a function to each element of the
array. (This may seem familiar to you, since you've already implemented your own forEach() function earlier
in the course.) forEach() takes a function, and applies that function to each elementofthe array to change it.
The three parameters of the function are x (the value of the current array item to which the function is being
applied), i (the index of the current array item), and a (the array itself). Our function adds 1to each item in the

array. Notice that the forEach method doesn't return anything, but (in this case) our function modifies the
array directly.

Now let's try the map() method (you've seen this before):

INTERACTIVE SESSION:

> var b = a.map (function(x) { return x * 2; });
undefined

> b

[4, 6, 8]

> a

[2, 3, 4]




map() applies a function to each item in the array, and creates a new array out of the return values from the
function. Here, we multiply each item in a by 2, and store the resulting values in a new array named b. Notice
thata doesn't change.

ES5 defines a few other useful array methods you should check out, including isArray(), every(), some(),
filter() and reduce().

Object Property Descriptors

In ES5, objects are quite a bit more complex. Fortunately, you don't have to change the way you create and
use objects. These new features are useful, but definitely not required.

The big change in objects is that an object property now comes with a property descriptor. In fact, assuming
you're using a browser thatimplements the ES5 standard for JavaScript, the objects you've been creating in
this course all have properties with property descriptors, you justdidn'tknow it. You already know that an
object property has a value. In addition, properties now have three other attributes: writable, enumerable,
and configurable. These three attributes are all optional, and are all true by default. Let's check them out:

INTERACTIVE SESSION:
> var o = { x: 1 }
undefined

> Object.getOwnPropertyDescriptor (o, "x")
Object { value: 1, writable: true, enumerable: true, configurable: true }

We define a simple object o, with just one property o.x which has the value 1.

Then we use a method of Object (which, remember, is the parent object of all other objects in JavaScript),
Object.getOwnPropertyDescriptor() to getthe property descriptor for the property x. We pass in both the
object and the name of the property (as a string) as arguments to the method, and get back the property
descriptor.

The property descriptor shows the value of the property, 1, as well as the values for the attributes writable,
enumerable, and configurable. Let's talk about these attributes.

If writable is true, then you can change the value of an attribute:

INTERACTIVE SESSION:

> o0.x = 10

10

> 0

Object { x: 10 }

Just like you'd expect, that's the default behavior. So, what if you want to change it? There are a couple of
ways you can do that. One is to modify the attributes of the property descriptor directly using an Object
method, Object.defineProperty(). We'll try this approach now, but there's a simpler way to change an
object to preventits properties from being writable that we'll look at a bit later.

INTERACTIVE SESSION:

> Object.defineProperty (o, "x", { writable: false });
Object { x: 10 }

> 0.x = 20;

20

> 0.x

10

The Object.defineProperty() method takes three arguments: the object whose property you want to
modify, the property name (and note that this is a string), and an object with the attribute you want to modify. In
this case, we've passed an object setting the writable attribute to false. We then try to change the value of



the property o.x to 20, and we can't; the value of o.x is still 10. Note that we don'tgetan error! The
assignmentis simply ignored. That's because we're not using strict mode in the console. Let's try the same
operation using strict mode. Modify strict.xml as shown:

CODE TO TYPE:

<!doctype html>
<html>
<head>
<title> </title>
<meta charset="utf-8">
<script>
(function() {
"yse strict";
var innerMyVar = "I'm not declared in this function either.";

var o = {

}i
Object.defineProperty (o, "x", { writable: false });
o.x = 20;
1O
</script>
</head>
<body>
</body>
</html>

Here, we define an object o, change the property x so thatit's not writable, and then attempt to set the value of

x to 20. = and PrEVIEW 5% |n the console, you see this error (in Chrome):

OBSERVE:

Uncaught TypeError: Cannot assign to read only property 'x' of #<Object>

So, in strict mode, attempting to set the value of a property that's not writable will generate an error;if you're
notin strict mode, the assignnment will fail, but you won't get an error (and your code will continue to
execute). We'll continue to work in the console, but we'll note where an operation that's ignored in the
console would generate an errorin strict mode.

Keep in mind that when you modify an attribute of a property using Object.defineProperty(), you're not
modifying an attribute of the entire object; you're modifying only an attribute of a specific property in the object.
Every property that you add to the object will have its own set of attributes. Let's try adding a new property to
o:

INTERACTIVE SESSION:

> var o = { x: 10 }

undefined

> Object.defineProperty (o, "x", { writable: false });
Object {x: 10}

> o.y = 20;

20

> 0

Object {x: 10, y: 20}

> Object.getOwnPropertyDescriptor (o, "x");

Object { value: 10, writable: false, enumerable: true, configurable: true }
> Object.getOwnPropertyDescriptor (o, "y");

Object { value: 20, writable: true, enumerable: true, configurable: true }




Firstwe add a new property to o; thatworks as usual. Then we display the property descriptors for the two
properties. You can see that o.x is notwritable, while 0.y is (because writable is true by default).

Okay, we've explored the writable attribute, now what aboutenumerable? This property indicates that you
can enumerate the property when you loop through the object's properties (or use one of the new Object
methods to display properties). Let's give ita try:

INTERACTIVE SESSION:

> 0

Object { x: 10, y: 20 }

> for (var prop in o) { console.log(prop); }
X

Yy

< undefined

Our object o has two properties and both are currently enumerable (take a look back atthe enumerable
attribute for both properties above, and you'll see that both attribute values are true). That means when we
enumerate them by looping through all the property names in the object using the for loop above, we can
see both property names.

ES5 has added two other methods for enumerating object property names: Object.keys() and
Object.getOwnPropertyNames(). Let's try both of these methods to enumerate the property names in o:

INTERACTIVE SESSION:

> Object.keys (0);

["X", "y"]
> Object.getOwnPropertyNames (0) ;
["X", "yll]

In both cases, the resultis an array of property names. These new methods for retrieving the property names
of an object (added in ES5) are really efficient. When you use them, you don't have to write aloop to access
each property name.

Now, let's try making the o.y property's enumerable attribute false:

INTERACTIVE SESSION:

> Object.defineProperty (o, "y", { enumerable: false });

Object { x: 10 }

> 0

Object { x: 10 }

> Object.getOwnPropertyDescriptor (o, "y");

Object { value: 20, writable: true, enumerable: false, configurable: true }
> Object.keys (o) ;

[IIX"]
> Object.getOwnPropertyNames (0) ;
["x", "y"]

First, we setthe enumerable attribute of 0.y to false. You can see right away that when we display the
object, we no longer see the y property. That means the Object.toString() method can't"see" properties
thataren'tenumerable.

We get the property descriptor for 0.y and see thatindeed, the enumerable attribute has been setto false.
When we use the Object.keys() method to retrieve the property names in the object o, we no longer see "y"
in the resulting array. So the Object.keys() method can't"see" properties that aren't enumerable either.

Finally, we use the Object.getOwnPropertyNames() method to getthe property names and again we see
"y" in the results.



So, we have a way of hiding property names when an objectis displayed, or when we try to enumerate the
property names with any method except Object.getOwnPropertyNames().

Now, let's look at the configurable attribute. Once you set this attribute to false, you can't change it back
because the property is no longer configurable. If a property isn't configurable, it can't be deleted from the
object.

INTERACTIVE SESSION:

> 0

Object {x: 10, z: 3}

> Object.defineProperty(o, "z", { configurable: false });
Object {x: 10, z: 3}

> 0.z = 4;

4

> 0

Object {x: 10, =z: 4}

> delete 0.z

false

> Object.defineProperty (o, "z", { configurable: true });
TypeError: Cannot redefine property: z

First, we add a new property, 0.z and setits value to 3. Then we change the 0.z property's configurable
attribute to false. We can still change the value of the property, which we do, setting itto 4, but we can't delete
the property, or setits configurable attribute back to true.

Attempting to delete a non-configurable property in strict mode generates the error: Uncaught

Note TypeError: Cannot delete property 'z' of #<Object>

These attributes allow you to have a lot more control over your objects' properties.

Sealing and Freezing Objects

There are two shortcut methods you can use to set property descriptor attributes and help protect your
objects.

The firstof these is Object.seal(). This method sets the configurable attribute of every property in the
objectto false, and also disallows the addition of any new properties to the object. You can still read, write,
and enumerate the properties in the object; you just can'tremove properties or add new ones.



INTERACTIVE SESSION:

> var myObject = {

name: "Elisabeth",

course: "Advanced JavaScript",

year: 2013

bi

undefined
> myObject
Object {name: "Elisabeth", course: "Advanced JavaScript", year: 2013}

> Object.getOwnPropertyDescriptor (myObject, "name");

Object {value: "Elisabeth", writable: true, enumerable: true, configurable: true
}

> Object.getOwnPropertyDescriptor (myObject, "course");

Object {value: "Advanced JavaScript", writable: true, enumerable: true, configur
able: true}

> Object.getOwnPropertyDescriptor (myObject, "year");

Object {value: 2013, writable: true, enumerable: true, configurable: true}

> Object.seal (myObject) ;
Object {name: "Elisabeth", course: "Advanced JavaScript", year: 2013}

> Object.getOwnPropertyDescriptor (myObject, "name");

Object {value: "Elisabeth", writable: true, enumerable: true, configurable: fals
e}

> Object.getOwnPropertyDescriptor (myObject, "course");

Object {value: "Advanced JavaScript", writable: true, enumerable: true, configur
able: false}

> Object.getOwnPropertyDescriptor (myObject, "year");

Object {value: 2013, writable: true, enumerable: true, configurable: false}

> myObject.newProperty = "attempting to add a new property";
"attempting to add a new property"
> myObject

Object {name: "Elisabeth", course: "Advanced JavaScript", year: 2013}
> Object.keys (myObject) ;

["name", "course", "year"]

> myObject.name = "Scott";

Object {name: "Scott", course: "Advanced JavaScript", year: 2013}

First, we define a new object, myObject, with three properties: name, course, and year. By default, the
attributes in the property descriptor for each of these properties are true, which we can see by inspecting
them using Object.getOwnPropertyDescriptor(). (Unfortunately, there's no way to see the property
descriptors of all the properties atonce).

Next, we "seal" the object, by calling Object.seal(), and passing in the object myObject. This changes the

configurable attribute of each of the properties to false.

We try to add a new property to the object, myObject.newProperty. We don'tgetan error message when

we try to do this (because we're notin strict mode), but the assignmentis ignored, and the property is not

added to the object. When we use the Object.keys() method to display the property names in the object, we

can see that no new property is added.

Finally, we change the value of the myObject.name property from "Elisabeth" to "Scott," justto prove that

even if the objectis sealed, we can still change the value of the properties.

If you try to add a new property to myObject (which is sealed) in strict mode, you'll get the error

Note message Uncaught TypeError: Can't add property newProperty,object is not
: extensible.

You can check to see ifan objectis sealed using the Object.isSealed() method:



INTERACTIVE SESSION:

> Object.isSealed (myObject)
true

A similar method is Object.freeze(). It works like Object.seal(), butin addition, it sets the writable
attribute of all the property descriptors to false, so you can't change the value of properties:

INTERACTIVE SESSION:

> Object.freeze (myObject) ;
Object {name: "Scott", course: "Advanced JavaScript", year: 2013}

> myObject.name = "Elisabeth"

"Elisabeth"

> myObject

Object {name: "Scott", course: "Advanced JavaScript", year: 2013}

You can find outif an objectis frozen using the Object.isFrozen() method.

If you try to setthe value of a property in a frozen objectin strict mode, you'll get the error
' Note message Uncaught TypeError: Cannot assign to read only property 'name' of '
: #<0bject>. '

The Object.seal() and Object.freeze() methods are useful for protecting your objects while still allowing
access to the properties (both for reading the value of the properties and for enumerating the properties).

Both Object.seal() and Object.freeze() disallow new properties from being added to objects by setting
them to non-extensible. You can do this yourself (separately) using the Object.preventExtensions()
method, and determine whether an objectis extensible using the Object.isExtensible() method.

We left the description of these recent capabilities of JavaScript objects until the end of the course because
they are recent additions and as such are not used much yet. Still, it's important to know that they are available
ifand when you do need them. You probably will in certain situations like when you want to make sure thatan
objectis protected from change. In addition, it's likely that these features will be used in future additions to the
language.

Creating Objects

Another new method of Object that was added in ES5 is the Object.create(). You already know how to
create objects by writing a literal object, and by using a constructor.

Object.create() is a little different because it allows you to create an object and specify its prototype. So if
you create an object, like the Person object below, you can then create objects thatuse Person as their
prototype (meaning those objects inherit the properties and methods of the Person object):



CODE TO TYPE:

<!doctype html>
<html>
<head>
<title> Creating Objects </title>
<meta charset="utf-8">
<script>
var Person = {
welcome: function() {
console.log("Welcome " + this.name + "!");
b
isAdult: function() {
if (this.age > 17) {
return true;

b7

var bob = Object.create (Person);
bob.name = "Bob Parsons";
bob.age = 42;

bob.welcome () ;
if (bob.isAdult()) {
console.log(bob.name + " can get a beer");

var mary = Object.create (Person);
mary.name = "Mary Smith";
mary.age = 12;

mary.welcome () ;

if (!'mary.isAdult()) {
console.log("Sorry, " + mary.name + " can't get a beer");
}
</script>
</head>
<body>
</body>
</html>

= Save the file in your /AdvJ S/ folder as createObjects.html and PrEVIEW & Open the console; you
see:

OBSERVE:

Welcome Bob Parsons!

Bob Parsons can get a beer

Welcome Mary Smith!

Sorry, Mary Smith can't get a beer

We made these variables global so you can access them in the console. Try this:



INTERACTIVE SESSION:

> Person.isPrototypeOf (bob)

true

> Person.isPrototypeOf (mary)

true

> bob

Object {name: "Bob Parsons", age: 42, welcome: function, isAdult: function}
> mary

Object {name: "Mary Smith", age: 12, welcome: function, isAdult: function}

The Person objectis the prototype of both bob and mary, and those objects do indeed inherit the properties
from Person. (So, what happens when you use Object.keys() to get the property names of bob and mary?
Why?)

However, note that because we created bob and mary using Object.create() and nota constructor, when
you look at the constructor of bob like this:

INTERACTIVE SESSION:

> bob.constructor

function Object () { [native code] }

> bob

Object {name: "Bob Parsons", age: 42, welcome: function, isAdult: function}

...you can see that the constructor is Object(). bob and mary are created using the Object() constructor
behind the scenes and then explicitly changing the prototype objectto Person. You can see this reflected
also when we display bob in the console: you see "Object" as the "type" of the object, even though the
prototype of the objectis Person.

Whenever you create an object using a constructor, that object gets a prototype thatis stored in the
constructor's prototype property. Recall that we created a circle by writing new Circle(), and the resulting
object's prototype was the Circle objectin Circle.prototype. Contrast that way of creating objects with
using Object.create(). Object.create() allows you to assign the prototype of an object without (explicitly)
using a constructor (although the Object() constructoris used behind the scenes).

In addition, with Object.create() you can pass a second argument to the method containing an object that
specifies attributes for the properties:



INTERACTIVE SESSION:

> var jim = Object.create(Person, {
name: {
value: "Jim Smith",
writable: false
}I
age: {
value: 42,
writable: false
}
}) i
undefined
> jim.name
"Jim Smith"
> jim.age
42
> jim.welcome ()
Welcome Jim Smith!
< undefined
> jim.isAdult ()
true
> jim.name = "Joe Schmoe"
"Joe Schmoe"
> jim.welcome ()
Welcome Jim Smith!

Here, we create a new object using Object.create(), and pass the Person objectto use as the prototype.
We also pass an object that defines the values of the properties and their attributes for the new object.
Because we set both properties so they are not writable, we can't change the values in the object jim.

E Note If you try to change the value of jim.name in strict mode, you see the error message Uncaught
' TypeError: Cannot assign to read only property ‘'name’ of #<Object>.

So, Object.create() gives you an efficient way to create a prototype chain for objects in JavaScript.

In this lesson, you've learned about some of the new features of JavaScript that were added in ES5 (or ECMAScript 5.1
specification). If you're running the most recent version of a modern browser, then it's likely you can use all of these new
features.

Developers are already hard at work on the ECMAScript 6 specification for the next version of JavaScript (code-named
Harmony). You can see the specification in progress atthe ECMAScript wiki. As of this writing, the creation of the new
specification is underway, so many of the new features are notavailable in browsers. The changes will be more extensive than
the changes in ES5, including the addition of block scope, classes, and modules. Exciting!

You've come a long way in this course, exploring much of the JavaScript language including types and values, functions,
objects, and closures. You've also worked with techniques for programming such as using the Module pattern to reduce global
variables and keep parts of objects private. Well done! We look forward to seeing what you do in your final project!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.



http://wiki.ecmascript.org/doku.php?id=harmony:specification_drafts
http://creativecommons.org/licenses/by-sa/3.0/legalcode

	Getting the Type of a Value with Typeof
	Null and Undefined
	To Infinity (But Not Beyond)
	Not a Number
	Adding and Deleting Properties
	What's the Type of an Object?
	Shortcuts using truthy and falsey results
	Using Closures to Create Private Data
	Closures as Click Handlers

