
Advanced JavaScript Essentials
Lesson 1: Int ro duct io n t o Advanced JavaScript

Welcome to Advanced JavaScript
Accessing the Conso le
Using the Conso le
Good Programming Style Practices
Testing Code in the Conso le
Interacting Directly in the Conso le
Commenting Your Code

Quiz 1
Lesson 2: Kno w Yo ur T ypes

Know Your Types: Primitives and Objects
Primitives
Some Interesting Numbers
Objects
Enumerating Object Properties
Primitives That Act like Objects
JavaScript is Dynamically Typed

Quiz 1 Pro ject 1 Pro ject 2 Pro ject 3
Lesson 3: T rut hy, Falsey, and Equalit y

Truthy, Falsey, and Equality
Values That are Truthy or Falsey
Implied Typecasting
Testing Equality
Objects and Truthy-ness
Objects and Equality

Quiz 1 Pro ject 1 Pro ject 2
Lesson 4: Co nst ruct ing Object s

Constructing JavaScript Objects
Constructing an Object with a Constructor Function
Constructing an Object Using a Literal
Constructing an Object Using a Generic Object Constructor
So, What's the Best Way to Make an Object?
Initializing Values in Constructors
this
Constructing Array Objects

Quiz 1 Pro ject 1 Pro ject 2
Lesson 5: Pro t o t ypes and Inherit ance

Object-Oriented Programming in JavaScript
instanceof
Proto types
Proto types o f Literal Objects
What is a Pro to type Good For?
The Proto type Chain
Proto typal Inheritance
When are Proto type Objects Created?

homework/IntroToAdvJS_quiz.quiz.html
homework/Types_quiz.quiz.html
homework/Types_proj1.project.html
homework/Types_proj2.project.html
homework/Types_proj3.project.html
homework/TruthyFalsey_quiz.quiz.html
homework/TruthyFalsey_proj1.project.html
homework/TruthyFalsey_proj2.project.html
homework/ConstructingObjects_quiz.quiz.html
homework/ConstructingObjects_proj1.project.html
homework/ConstructingObjects_proj2.project.html

hasOwnProperty
__proto__
Setting the Proto type Property to an Object Yourself

Quiz 1 Quiz 2 Pro ject 1 Pro ject 2
Lesson 6 : Funct io ns

JavaScript Functions
What is a Function?
Different Ways o f Defining a Function
Functions as First Class Values
Anonymous Functions
Returning a Function from a Function
Functions as Callbacks
Calling Functions: Pass-by-Value
Return

Quiz 1 Quiz 2 Pro ject 1 Pro ject 2
Lesson 7: Sco pe

Scope
Variable Scope
Function Scope
Hoisting
Nested Functions
Lexical Scoping
Scope Chains
Inspecting the Scope Chain

Quiz 1 Pro ject 1
Lesson 8 : Invo king Funct io ns

Invoking Functions
Different Ways to Invoke Functions
What Happens to this When You Invoke a Function
Nested Functions
When You Want to Contro l How this is Defined
call() and apply()
Function Arguments
The Four Ways to Invoke a Function

Quiz 1 Pro ject 1 Pro ject 2
Lesson 9 : Invo cat io n Pat t erns

Invocation Patterns
Recursion
Why Use Recursion?
Chaining (a la jQuery)
Static vs. Instance Methods

Quiz 1 Pro ject 1 Pro ject 2 Pro ject 3
Lesson 10: Encapsulat io n and APIs

Encapsulation and APIs
Privacy, Please
An Example
Private Variables

homework/Prototypes_quiz1.quiz.html
homework/Prototypes_quiz2.quiz.html
homework/Prototypes_proj1.project.html
homework/Prototypes_proj2.project.html
homework/Functions_quiz1.quiz.html
homework/Functions_quiz2.quiz.html
homework/Functions_proj1.project.html
homework/Functions_proj2.project.html
homework/Scope_quiz.quiz.html
homework/Scope_proj.project.html
homework/InvokingFunctions_quiz.quiz.html
homework/InvokingFunctions_proj1.project.html
homework/InvokingFunctions_proj2.project.html
homework/InvocationPatterns_quiz.quiz.html
homework/InvocationPatterns_proj1.project.html
homework/InvocationPatterns_proj2.project.html
homework/InvocationPatterns_proj3.project.html

Private Functions
A Public Method
Acessing a Public Method from a Private Function
Encapsulation and APIs

Quiz 1 Pro ject 1 Pro ject 2
Lesson 11: Clo sures

Closures
Making a Closure
What is a Closure?
Playing with Closures
Each Closure is Unique
Closures Might Not Always Act Like You Expect
Closures for Methods
Using Closures
Where We've Used Closures Before

Quiz 1 Pro ject 1
Lesson 12: T he Mo dule Pat t ern

Module Pattern
IIFE or Immediately Invoked Function Expressions
The Module Pattern
Using the Module Pattern with JavaScript Libraries
A Shopping Basket Using the Module Pattern
Why Not Just Use an Object Constructor?

Quiz 1 Pro ject 1
Lesson 13: T he JavaScript Enviro nment

JavaScript Runs in an Environment
The Core Language, and the Environment's Extensions
How the Browser Runs JavaScript Code
Including JavaScript in Your Page
The JavaScript Event Loop
The Event Queue
Asynchronous Programming
JavaScript in Environments Other Than the Browser

Quiz 1 Pro ject 1
Lesson 14: ECMAScript 5 .1

The ECMAScript Standard for JavaScript
Strict Mode
New Methods
Object Property Descriptors
Sealing and Freezing Objects
Creating Objects

Pro ject 1 Pro ject 2

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

homework/EncapsulationAndAPIs_quiz.quiz.html
homework/EncapsulationAndAPIs_proj1.project.html
homework/EncapsulationAndAPIs_proj2.project.html
homework/Closures_quiz.quiz.html
homework/Closures_proj.project.html
homework/ModulePattern_quiz.quiz.html
homework/ModulePattern_proj.project.html
homework/JavaScriptEnvironment_quiz.quiz.html
homework/JavaScriptEnvironment_proj.project.html
homework/ECMAScript5_proj1.project.html
homework/ECMAScript5_proj2.project.html
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Introduction to Advanced JavaScript

Welcome to the O'Reilly School o f Technology's (OST) Introduction to Advanced JavaScript course.

Course Objectives
When you complete this course, you will be able to :

create an object-oriented JavaScript program.
structure your programs to make use o f encapsulation where needed.
write JavaScript using best coding practices.
make use o f patterns to structure your code.
use and understand advanced techniques such as closures and recursion.
obtain and utilize information about the environment in which JavaScript is running.

Before we begin programming, you need to learn a little about the programming environment you'll be using. This first lesson o f
the course will help you with that.

Lesson Objectives

When you complete this lesson, you will be able to :

use OST's Sandbox and learning too ls.
read about what to expect in the Advanced JavaScript course.
review JavaScript basics.
use the Developer Too ls in your browser to access the JavaScript conso le, which we'll be using extensively in this
course.
use conso le.log to display messages in the conso le (fo r debugging).
use good programming practices in your code.

Learning with O'Reilly School of Technology Courses
As with every O'Reilly School o f Technology course, we'll take a user-active approach to learning. This means that you
(the user) will be active! You'll learn by do ing, building live programs, testing them and experimenting with them—
hands-on!

To learn a new skill o r techno logy, you have to experiment. The more you experiment, the more you learn. Our system
is designed to maximize experimentation and help you learn to learn a new skill.

We'll program as much as possible to be sure that the principles sink in and stay with you.

Each time we discuss a new concept, you'll put it into code and see what YOU can do with it. On occasion we'll even
give you code that doesn't work, so you can see common mistakes and how to recover from them. Making mistakes
is actually another good way to learn.

Above all, we want to help you to learn to learn. We give you the too ls to take contro l o f your own learning experience.

When you complete an OST course, you know the subject matter, and you know how to expand your knowledge, so
you can handle changes like software and operating system updates.

Here are some tips for using O'Reilly School o f Technology courses effectively:

T ype t he co de. Resist the temptation to cut and paste the example code we give you. Typing the code
actually gives you a feel fo r the programming task. Then play around with the examples to find out what else
you can make them do, and to check your understanding. It's highly unlikely you'll break anything by
experimentation. If you do break something, that's an indication to us that we need to improve our system!
T ake yo ur t ime. Learning takes time. Rushing can have negative effects on your progress. Slow down and
let your brain absorb the new information thoroughly. Taking your time helps to maintain a relaxed, positive
approach. It also gives you the chance to try new things and learn more than you o therwise would if you
blew through all o f the coursework too quickly.

Experiment . Wander from the path o ften and explore the possibilities. We can't anticipate all o f your
questions and ideas, so it's up to you to experiment and create on your own. Your instructor will help if you
go completely o ff the rails.
Accept guidance, but do n't depend o n it . Try to so lve problems on your own. Going from
misunderstanding to understanding is the best way to acquire a new skill. Part o f what you're learning is
problem so lving. Of course, you can always contact your instructor fo r hints when you need them.
Use all available reso urces! In real- life problem-so lving, you aren't bound by false limitations; in OST
courses, you are free to use any resources at your disposal to so lve problems you encounter: the Internet,
reference books, and online help are all fair game.
Have f un! Relax, keep practicing, and don't be afraid to make mistakes! Your instructor will keep you at it
until you've mastered the skill. We want you to get that satisfied, "I'm so coo l! I did it!" feeling. And you'll have
some pro jects to show off when you're done.

Lesson Format
We'll try out lo ts o f examples in each lesson. We'll have you write code, look at code, and edit existing code. The code
will be presented in boxes that will indicate what needs to be done to the code inside.

Whenever you see white boxes like the one below, you'll type the contents into the editor window to try the example
yourself. The CODE TO TYPE bar on top o f the white box contains directions for you to fo llow:

CODE TO TYPE:

White boxes like this contain code for you to try out (type into a file to run).

If you have already written some of the code, new code for you to add looks like this.

If we want you to remove existing code, the code to remove will look like this.

We may also include instructive comments that you don't need to type.

We may run programs and do some other activities in a terminal session in the operating system or o ther command-
line environment. These will be shown like this:

INTERACTIVE SESSION:

The plain black text that we present in these INTERACTIVE boxes is
provided by the system (not for you to type). The commands we want you to type look lik
e this.

Code and information presented in a gray OBSERVE box is fo r you to inspect and absorb. This information is o ften
co lor-coded, and fo llowed by text explaining the code in detail:

OBSERVE:

Gray "Observe" boxes like this contain information (usually code specifics) for you to
observe.

The paragraph(s) that fo llow may provide addition details on inf o rmat io n that was highlighted in the Observe box.

We'll also set especially pertinent information apart in "Note" boxes:

Note Notes provide information that is useful, but not abso lutely necessary for performing the tasks at hand.

Tip Tips provide information that might help make the too ls easier fo r you to use, such as shortcut keys.

WARNING Warnings provide information that can help prevent program crashes and data loss.

The CodeRunner Screen
This course is presented in CodeRunner, OST's self-contained environment. We'll discuss the details later, but here's
a quick overview of the various areas o f the screen:

These videos explain how to use CodeRunner:

File Management Demo

Code Editor Demo

Coursework Demo

Welcome to Advanced JavaScript
You can get started with JavaScript quickly. All you need is a text edito r and a browser, and you can begin
experimenting. When you learned the basics o f JavaScript, you probably used it to modify web pages, and maybe to
modify the style o f your pages in response to user input. You've probably written event listeners to handle events like
click events, and you've most likely used JavaScript to validate form data or add and remove elements from your page
as users interact with it.

In this course, we'll focus on the JavaScript language itself. Since the primary place we use JavaScript is in the browser
to create interactive web pages, we'll still build web page applications, but the focus will be on language features, rather
than on web interfaces and the techniques we use to create web apps. The goal o f this course is to take your
understanding o f JavaScript to a deeper level, from scripter to programmer. You'll learn how to leverage the powerful
features o f JavaScript in your programming, as well as how to avo id common mistakes.

Accessing the Console

We'll make frequent use o f the conso le to view the output we generate with co nso le.lo g, as well as to
inspect code. So, before we do anything else, let's make sure you're comfortable with the developer conso le,
and you remember how to access and use it in each o f the major browsers. Most end users never see the
conso le because it's fo r developers who are creating, testing, and debugging code, so if you haven't had
experience with the conso le before, don't worry, we'll get you up to speed quickly.

In this course, we'll show most examples using the Chrome browser conso le, because, as o f this writing, it
has the most functionality and is the easiest to use o f the browser conso les. But you should become familiar
with multiple browser conso les for testing and debugging your code.

http://www.youtube.com/watch?v=45sATp529Mw
http://www.youtube.com/watch?v=SvbM6vPAG9k
http://www.youtube.com/watch?v=WmajY8bIXrA

Note
Browsers are continualy updated with new versions that include new versions o f the conso le.
So, while the basic functionality o f the conso le will likely remain the same, your version o f the
conso le may look slightly different from what you see in this course. As you become familiar
with the different browser conso les, you'll be able to figure out how to use each one.

Create a fo lder fo r your work. In the File Browser, right-click the Ho me fo lder and select New f o lder... (o r
click the Ho me fo lder and press Ct rl+n), type the new fo lder name AdvJS , and press Ent er.

Now create a new HTML file, then add this code:

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> Getting Started </title>
 <meta charset="utf-8">
 <script src="basics.js"></script>
</head>
<body>
</body>
</html>

 Save this as basics.ht ml in your /AdvJS fo lder.

Now create a new JavaScript file and add this code:

CODE TO TYPE:

var onSale = true,
 inventoryLevel = 12,
 discount = 3;
if (onSale && inventoryLevel > 10) {
 console.log("We have plenty left");
}
if (onSale || discount > 0) {
 console.log("On sale!");
} else {
 console.log("Full price");
}

 Save this as basics.js in your /AdvJS fo lder.

Now preview your basics.ht ml file. You'll see an empty web page. To see the result o f the
JavaScript, open up your browser's conso le. To get instructions to access your conso le, click on the link to
whichever browser you're using:

Chrome
Safari
Firefox
Internet Explorer

To access the conso le in Chrome, use the View | Develo per | JavaScript Co nso le menu:

Once you've enabled the conso le, you may need to reload the page to see the output. You'll see:

There are many parts to the conso le. You'll become more familiar with some of them as we work through the
course.

Continue to the next step.

To access the conso le in Safari, use the Develo p | Sho w Web Inspect o r menu (if you don't have Develo p
enabled, you can enable it with Pref erences | Advanced | Sho w Develo p menu in menu bar):

You might need to reload the page to see this output:

In order to see the output in the the Safari conso le, make sure you have selected the Lo g tab in the conso le,
and you have the "Current log" at the top o f the list on the left panel selected. (You may only see one log, but if
you reload the page you could see previous logs. The current log is always at the top. This is where your
most recent output from co nso le.lo g will appear).

Continue to the next step.

To enable the Firefox conso le, use the T o o ls > Web Develo per > Web Co nso le menu and access the
conso le:

You may need to reload the page to see the output in the conso le. Note that in Firefox, the default location for
the conso le is above the web page (unlike Chrome and Safari). You can click on the Po sit io n menu in the
conso le and select "bottom" or "window" to change the position o f the conso le. Choosing "window" will pop
the conso le out into a separate window.

Continue to the next step.

To enable the Internet Explorer conso le, select T o o ls | F12 Develo per T o o ls and then select the Co nso le
tab.

You may need to reload the page to see the output in the conso le.

Using the Console

Let's take a closer look at the Chrome conso le since that's the one we'll use in our examples throughout the
course. Other browser conso les have the same basic functionality. We'll let you know when you need to use
the Chrome conso le specifically to fo llow along.

There are several tabs across the top o f the conso le, including the one we're on, Co nso le . You'll use
Co nso le most o ften when looking at the results o f co nso le.lo g() , and debugging your code by checking to
see if there are any JavaScript errors. In Safari, the equivalent is the Lo g tab shown in the screenshot; in
Firefox, it's the default view you see when you access Web Co nso le from the menu, and in IE, it's a tab
labeled Co nso le .

In Chrome, if you want to view the conso le into a separate window, click on the icon in the bottom left corner:

Click the undo ck icon now. This will create a separate window for the conso le. You can click the icon in the
same location in that new window to dock it back to the original window. Give it a try.

You see two messages in the conso le that we created using co nso le.lo g in our code:

OBSERVE:

var onSale = true,
 inventoryLevel = 12,
 discount = 3;
if (onSale && inventoryLevel > 10) {
 console.log("We have plenty left");
}
if (onSale || discount > 0) {
 console.log("On sale!");
} else {
 console.log("Full price");
}

The two co nso le.lo g() messages shown in orange above create the output in the conso le. The file name in
which the statements appear and the line numbers o f the two statements are displayed in the conso le, next to
the output.

In Chrome, try clicking one o f the line numbers, like basics.js:5 . This will open the So urces tab, and
highlight that line in yellow temporarily:

This can help you track down potential bugs. There are whole lo t o f options on the right side o f the "Sources"
panel, including "Call Stack," "Scope variables," and "Breakpo ints," all o f which we'll use later as we get into
some more advanced topics. Make sure that you have downloaded Chrome and have the latest version
installed on your computer fo r testing. As o f this writing, the current version is 26. Your version may be
different, but that's okay because the basic functionality o f the conso le is the same.

Note
Unfortunately, at this time, the o ther browsers don't come with the same too l installed by default.
Go ahead and download Chrome and get familiar with the conso le too ls, even if you typically
use another browser to create web pages.

We'll explore more o f the conso le later, but fo r now we'll take a closer look at the code.

Good Programming Style Practices

Let's review some good practices for writing JavaScript programs:

OBSERVE:

var onSale = true,
 inventoryLevel = 12,
 discount = 3;
if (onSale && inventoryLevel > 10) {
 console.log("We have plenty left");
}
if (onSale || discount > 0) {
 console.log("On sale!");
} else {
 console.log("Full price");
}

T he variables we use are all declared at t he t o p and given def ault values. In general, it's good
practice to declare your variables at the top o f your file (or at the top o f a function, if they are local variables),
and to give them values. A variable that is not given a value is undef ined. That's okay, but you need to be
aware o f which variables have values and which don't as you write your program. It's usually better practice to
give your variables default values, rather than leave them undefined.

We've used the comma-separated style to declare the variables. It's also a good idea to put each variable
declaration on a separate line. Still, you can always declare them with separate statements instead, like this:

OBSERVE:

var onSale = true;
var inventoryLevel = 12;
var discount = 3;

Either way is fine, so just do whatever you prefer.

Next, you'll see that we're using semico lons after every statement. While JavaScript doesn't require this
currently, it's a good habit to develop. If you leave the semico lon o ff, JavaScript might interpret your
statements and expressions in a way you're not anticipating. If you're in the habit o f leaving o ff your
semico lons, even occasionally, start putting them in after every statement. It will make debugging your code a
whole lo t easier. We suspect that future versions o f JavaScript may require semico lons to delimit statements
anyway, so you may as well get in the good habit now!

OBSERVE:

var onSale = true,
 inventoryLevel = 12,
 discount = 3;
if (onSale && inventoryLevel > 10) {
 console.log("We have plenty left");
}
if (onSale || discount > 0) {
 console.log("On sale!");
} else {
 console.log("Full price");
}

Another habit you should get into is using curly braces fo r every if (o r while o r f o r, and such) block o f
code, even if there's just one statement in the block. If you have only one statement in a block, technically you
don't need to use the { and } characters to delimit the block. However, this is a bad habit because it can cause
you to miss errors. Always use the curly braces!

Use plenty o f white space. It's better to add more white space and format your code so it's easy to read, than
to scrimp on space to make your code shorter. Readability is vital when working on larger, more complex
programs, and it's always possible to "minify" your JavaScript later to take out the white space and make it
more efficient to download.

Note There are plenty o f "minification" programs out there that can minify your code for you such as
jscompress.com and YUI compressor.

We'll cover o ther good programming practices and style suggestions throughout the course. We'll review
them at the end o f each lesson, so you'll get plenty o f practice. There are also quite a few good style guides
online if you want to explore this topic further (not all o f them agree on everything, o f course). We like the
Airbnb JavaScript Style Guide (github).

Testing Code in the Console

Let's practice using the conso le to inspect values in our code. Update your file basics.js to define an object,
rect , and then display it using conso le.log. Here, we define rect as an object literal; that is, an object we write
as the value o f the variable using the { and } characters to delimit the object. Remember, an object is just a
co llection o f key value pairs. In this case rect has just two properties—width and height:

http://jscompress.com
http://refresh-sf.com/yui/
https://github.com/airbnb/javascript

CODE TO TYPE:

var onSale = true,
 inventoryLevel = 12,
 discount = 3;
if (onSale && inventoryLevel > 10) {
 console.log("We have plenty left");
}
if (onSale || discount > 0) {
 console.log("On sale!");
} else {
 console.log("Full price");
}
var rect = {
 width: 100,
 height: 50
};
console.log(rect);

 Save your changes (basics.js), and preview your HTML file (basics.ht ml), o r simply reload
the page if you still have it open in the browser. Make sure the browser conso le is open (you might have to
reload the page to see the output). You'll see this output:

OBSERVE:

We have plenty left
On sale!
Object { width: 100, height: 50 }

In Chrome, it will look like this:

In Safari, it will look like this (make sure you click the little arrow next to the Object to see the object
properties):

In Firefox, it will look like this:

In IE, it will look like this:

Notice that each is just a little different, but each conso le shows you the same basic information about the
object, including the two property name/value pairs.

Now, let's make a small change to the code:

CODE TO TYPE:

var onSale = true,
 inventoryLevel = 12,
 discount = 3;
if (onSale && inventoryLevel > 10) {
 console.log("We have plenty left");
}
if (onSale || discount > 0) {
 console.log("On sale!");
} else {
 console.log("Full price");
}
var rect = {
 width: 100,
 height: 50
};
console.log(rect);
console.log("My object rect is: " + rect);

 and . In the conso le, you see:

OBSERVE:

Object { width: 100, height: 50 }
My object rect is: [object Object]

Why do you think this is? Instead o f seeing the two properties that the onject contains like we did before, we
see just a string representation o f the object, "[object Object]". That isn't really helpful. In our code, we're
creating a string by concatenating the object, rect , with the string "My object rect is: ", before outputting the
result to the conso le. Previously, we passed the object itself to co nso le.lo g() , so the co nso le.lo g()
function displayed the object. Now we're passing a string to co nso le.lo g() . When JavaScript converts the
object to a string, we don't get a very useful display o f the object.

Make one last change to your code:

CODE TO TYPE:

var onSale = true,
 inventoryLevel = 12,
 discount = 3;
if (onSale && inventoryLevel > 10) {
 console.log("We have plenty left");
}
if (onSale || discount > 0) {
 console.log("On sale!");
} else {
 console.log("Full price");
}
var rect = {
 width: 100,
 height: 50,
 toString: function() {
 return "Width: " + this.width + ", height: " + this.height;
 }
};
console.log(rect);
console.log("My object rect is: " + rect);
console.log("My object rect is: " + rect.toString());

Don't fo rget the comma after the height property value! We added a method to this object as the third

property value, so we need a comma between the second and third properties. and .

OBSERVE:

Object { width: 100, height: 50, toString: function }
My object rect is: Width: 100, height: 50
My object rect is: Width: 100, height: 50

The t o St ring method is now shown as part o f the rect object in the output from co nso le.lo g(rect) , which
you can see in t he f irst line o f o ut put abo ve . The line o f code we just added calls this method to display
the width and height properties o f the object, which you can see in t he t hird line o f o ut put abo ve.
However, the seco nd line that displayed "[object Object]" before, now displays the same as the third line.
That's because JavaScript automatically calls the t o St ring() method when converting an object to a string. If
you implement the t o St ring() method yourself in an object, then that's the method JavaScript will call. If you
don't, then JavaScript calls the t o St ring() method in the Object object, which is the parent object o f all
objects you create in JavaScript. The version o f t o St ring() that's implemented in the Object object doesn't
do a very good job o f creating a helpful string from the object, as you saw when "[object Object]" was
displayed.

Don't worry about these details right now; we'll come back to all that later. For now just note the different ways
that the conso le displays output, depending on how you call co nso le.lo g() and the kind o f value you pass
this function.

Here's the output in Chrome. In this screenshot, I've clicked on the line that shows the object properties (the
third line in the output), which opens up the object to show more details, including lo ts o f details about the
t o St ring() method. Again, don't worry about these details right now; we'll get to them later in the course, so
you'll know what they mean at the end.

Safari (note that you can open up the object, and also the t o St ring() method to see similar details in this
conso le):

Firefox:

See the (2) next to the line o f output? That means that the same line o f output is displayed twice.

IE:

Interacting Directly in the Console

So far, we've been using co nso le.lo g() to display messages in the conso le, but you can interact directly
with the conso le to display the values o f variables, create new statements, and even modify your web page.

In your browser's conso le, you'll see a prompt which indicates where you can type your own JavaScript. Click
in the conso le window next to the prompt, and type this:

INTERACTIVE SESSION:

> onSale
 true

Note The ">" character is the prompt; you shouldn't type this part.

We typed the name of the global variable o nSale and pressed Ent er. JavaScript responded with the value o f
o nSale .

Here's what the output looks like in the browsers Chrome, Safari, Firefox, and IE:

We typed the name of a global variable, o nSale that we defined in the code that's currently loaded into this
browser window. In response, the conso le provided the value o f the variable, t rue . (Just think o f o nSale like
an expression). Remember that you can only access global variables via the prompt, that is, variables defined
at the global level in the currently loaded page. So far, all o f the variables we've defined have been global.
When we begin creating functions with local variables, you won't be able to access those via the prompt, but
you can always display their values using co nso le.lo g() in your code (we'll look at another way to inspect
the values o f local variables using the Chrome conso le later).

Try entering the names o f the o ther global variables we've defined in this small program to see the output
(invent o ryLevel, disco unt , and rect). Try accessing the properties o f the rect object (fo r example,
rect .widt h and rect .height). Enter some other expressions like 2 + 3, or "test." What happens? What
happens if you enter the name of a variable that doesn't exist, like t est Var?

You can also define new variables at the prompt. This can coe in handy when you just want to try something
out without creating a whole new file. For example, try this:

INTERACTIVE SESSION:

> var a = [1, 2, 3];
undefined

In this statement, you define a new variable, a, to have the value o f an array with three values. You see the
value undef ined. That might be a bit confusing at first. It doesn't mean that the value o f a is undefined, it just
means that the value returned to the conso le as a result o f executing this statement is undefined (that is, the
value o f the statement itself is undefined).

To verify that you've actually created a value for the array a, type a at the prompt:

INTERACTIVE SESSION:

> a
[1, 2, 3]

Now, let's write a loop to iterate over this array, right in the conso le. To do this, you'll either type the entire fo r
loop on one line, or use Ct rl+Ent er in Chrome and Safari, Shif t +Ent er in Firefox, and click the Multiline

mode icon () to create new lines in the conso le.

INTERACTIVE SESSION:

> for (var i = 0; i < a.length; i++) {
 console.log("a[" + i + "]: " + a[i]);
 }

If you forget to create a new line character and press Ent er by mistake, you'll get an error and have to start
over. Once you've got it typed in, press Ent er to complete the code and you'll see this output:

OBSERVE:

a[0]: 1
a[1]: 2
a[2]: 3

What happens if you reload the page? The value o f a goes away. Variables that you add using the conso le
are valid only fo r the current session, and go away when you reload or close the tab or window.

Experiment! Create some new variables and write some JavaScript statements in the conso le. Get familiar
with using the conso le, especially in Chrome.

Commenting Your Code

Of course, we can't end the lesson without mentioning comments. Comments are an important part o f
creating readable programs, especially when your programs get large and complex. As you probably know,
there are two ways to comment code in JavaScript: /* ... */ and //. Let's give these both a try:

CODE TO TYPE:

/*
var onSale = true,
 inventoryLevel = 12,
 discount = 3;
if (onSale && inventoryLevel > 10) {
 console.log("We have plenty left");
}
if (onSale || discount > 0) {
 console.log("On sale!");
} else {
 console.log("Full price");
}
var rect = {
 width: 100,
 height: 50,
 toString: function() {
 return "Width: " + this.width + ", height: " + this.height;
 }
};
console.log(rect);
console.log("My object rect is: " + rect);
console.log("My object rect is: " + rect.toString());
*/

//
// This function computes the area of a circle
//
// @param {number} The radius of the circle
// @return {number} The area of the circle
//
function computeArea(radius) {
return radius * radius * Math.PI;
}

console.log("Area is: " + computeArea(3));

Here, we used /* ... */ to comment out large chunks o f code. This is standard practice, as the /* and */
delimeters give you a quick and straightforward way to comment multiple lines, which can make testing and
debugging easier.

We also used // to create several lines o f comments above the new co mput eArea() function that we added
to the code. We don't put all these comments in /* ... */ though, because if we decide later to comment out the
entire function, we can put the whole thing, including the heading comments, inside the /* and */ delimiters,
which makes commenting large chunks o f code (including multiple functions) a lo t easier. Of course, we can
use // to comment out single lines o f code temporarily fo r debugging or providing comments within a function.

Finally, notice the style we've used to comment this function.We've provided a brief description for the
function, as well as information about the parameter it expects, the radius o f the circle, and the value it returns
(which is the area o f the circle).

We won't always comment the examples extensively, but get in the habit o f commenting your pro ject code.
Your co-workers (and boss) will appreciate it, and so will you if (when) you need to go back and change your
code later.

Take some time to experiment in the conso le. Add more co nso le.lo g() statements in the example (or create your own
example and experiment with that). Write statements directly in the conso le.

From here on, we'll show screen shots mostly from Chrome, but you can (and should) try the course examples in multiple
browsers. We'll let you know when you need to use a specific browser conso le for testing.

Now that you've got the basics o f using the conso le down, we'll dive right into the nitty gritty o f JavaScript types in the next
lesson.

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Know Your Types
Lesson Objectives

When you complete this lesson, you will be able to :

differentiate primitives and objects.
categorize primitive types.
distinguish null and undefined.
construct objects.
use the conso le to experiment with JavaScript types, object properties, and various number representations.

JavaScript only has a few basic types, but they still require consideration. In this lesson, we'll review the basics o f primitives and
objects, delve into a few details you may not have encountered before, and deepen your understanding o f the fundamentals.

Know Your Types: Primitives and Objects
Every value in JavaScript is either a primitive or an object. Primitives are simple types, like numbers and strings, while
objects are complex types because they are composed o f multiple values, like this square object:

OBSERVE:

var square = {
 width: 10,
 height: 10
};

This object is composed o f two primitive values: a width, with a value o f 10, and a height, that also has the value o f 10.

We'll look into primitives first; we'll come back to objects later.

Primitives

The three primitive types you'll work with most o ften are numbers, strings, and boo leans. You can test these
types right in the browser's conso le.

Open the conso le in a browser window and try typing in some primitive values. Some browsers don't allow
you to open the conso le for an empty page. You can load the web page you created for basics.ht ml in the
previous lesson, and then open the conso le, and trying testing some types, like this:

INTERACTIVE SESSION:

> 3
3
> "test"
"test"
> true
true

Let's try an expression:

INTERACTIVE SESSION:

> 3 + 5
8

When you type an expression, the result o f that expression is a value, which is displayed in the conso le.

When you type a statement, the result o f that statement is (usually) undef ined:

INTERACTIVE SESSION:

> var x = 3;
undefined
> x + 5
8

Here, we declared a new variable, x, in a statement (the first thing you typed into the conso le), and then used it
in the expression x + 5 (the second thing you typed into the conso le). Even though the statement sets the
value o f x to 3, the result o f the statement itself is undefined. The result o f the expression is just the value that
the expression computes. Get used to this behavior so you don't get confused when you see undef ined in
the conso le!

Gett ing the Type of a Value with Typeof

JavaScript has a t ypeo f operator that you can use to check the type o f a value. There are a couple o f
reasons that you don't necessarily want to rely on this operator in your code. We'll get to those reasons a bit,
but fo r now, we'll use t ypeo f to check the type o f our primitives, like this:

INTERACTIVE SESSION:

> typeof 3
"number"
> typeof x
"number"
> typeof "test"
"string"
> typeof true
"boolean"

The t ypeo f operator might look a little strange at first; it's not like o ther operators you're used to that take two
values. t ypeo f takes just one value, and it returns the type o f that value as a string. So the type o f the number
3 is returned as the string "number." Notice that we can use t ypeo f on either values (like 3) or variables
containing values (like x).

You can use t ypeo f in an expression, like this:

INTERACTIVE SESSION:

> if (typeof x == "number") {
 alert("x is a number!");
 }
undefined

Remember to use Ct rl+Ent er o r Shif t +Ent er at the end o f a line in the conso le to avo id getting an error.
Use Ent er at the end o f the if statement (after the closing curly brace, }). Do you get the alert?

We compare the result o f the expression t ypeo f x with the string "number" , and if they're equal, alerting a
message (yes, you can alert from the conso le!). The result o f the if statement is undef ined.

Null and Undef ined

Now, let's take a look at these primitive types: null and undef ined. You've seen undef ined as the result o f
statements you typed in the conso le. It pops up in o ther places as well, but let's begin with null.

null is a way to say that a variable has "no value":

INTERACTIVE SESSION:

> var y = null;
undefined
> if (y == null) {
 console.log("y is null!");
 }
y is null!
⋖ undefined
> typeof y
"object"

Here, we assigned the value null to the variable y. So y has a value—a value that means "no value." Weird.
We can compare that value to null, and since y has the value null, that comparision is true, and so we see
the message "y is null!" in the conso le. (Yes, we can call co nso le.lo g() from the conso le!) Notice that you
see "y is null" in the conso le, and then you see the result o f the statement, which is undefined. In Chrome and
Safari, the conso le displays a little ⋖ character next to the undefined result o f the statement so you don't mix
up the output to the conso le ("y is null!") with the result o f the statement (undefined). In Firefox, you'll see a
right-po inting arrow next to the undefined result o f the statement.

Weirder still, when you check the t ypeo f y, you get "object" as the result. What? That doesn't seem right.
Well, guess what—it's not! This is an error in the current implementation o f JavaScript. The result should be
null, because the type o f null is null.

Note
This error is one reason you don't want to rely on t ypeo f in your code. This mistake should be
fixed in future implementations o f JavaScript, but fo r now, just keep this in mind if you ever do
need to use t ypeo f . (There's one o ther issue with t ypeo f we'll get to later).

Okay, so what about undef ined? Lots o f people confuse null with undef ined when they first start learning
JavaScript, so don't worry if it seems a bit murky. While null is a value that means "no value" (a mind bender
in itself), undef ined means that a variable has no value at all, no t even null:

INTERACTIVE SESSION:

> var z;
undefined
> z
undefined

You can create an undefined variable by declaring it and not initializing it. Here, we declared the variable z , but
didn't initialize it to a value. When we check the value o f z by typing its name in the conso le, we get the result
undef ined.

Don't confuse the undef ined you see as the result o f the statement var z; with the undef ined you see that
is the result o f the expression, z .

So what is the type o f undef ined? Can you guess? (This time, JavaScript has the correct implementation.)

INTERACTIVE SESSION:

> typeof z
undefined

Yes, the type o f undef ined is undef ined!

Even though z is undef inedm (meaning that it has no value), you can test to see if z is undefined, like this:

INTERACTIVE SESSION:

> if (z == undefined) {
 console.log("z is undefined!");
 }
z is undefined!
⋖ undefined

Or you can test it like this:

INTERACTIVE SESSION:

> if (typeof z == "undefined") {
 console.log("z is undefined!");
 }
z is undefined!
⋖ undefined

You'll get the same result. Try it! Still, in general, we recommend that you don't use t ypeo f unless you have a
good reason. You can test a variable to see it if is undefined directly by comparing the value o f the variable (in
this case z , to the value undef ined). You don't really need to use t ypeo f at all here.

Some Interesting Numbers

Before we leave the primitive types, let's talk a little more about numbers. In your JavaScript programs, you've
probably used numbers to loop over arrays, represent prices, count things, and much more, but there are a
few numbers you might not have run into yet.

First, let's go over how numbers are represented. In JavaScript there are two ways to represent numbers: as
integers and as floating po int numbers. For example:

INTERACTIVE SESSION:

> var myInt = 3;
undefined
> var myFloat = 3.12583E03;
undefined
> myInt
3
> myFloat
3125.83

You can write a floating po int number using scientific notation, 3.12583E03 (which means that the number
after the "E" is the number o f times you multiply the number by 10). This is handy when you want to represent
very large or very small numbers.

Speaking o f which, how do you know the largest or smallest numbers that you can represent? The JavaScript
Number object (which we'll talk more about later) has built- in properties for both o f these:
Number.MAX_VALUE and Number.MIN_VALUE. Try them in your conso le:

INTERACTIVE SESSION:

> Number.MAX_VALUE
1.7976931348623157e+308
> Number.MIN_VALUE
5e-324

Wow. The MAX_VALUE is pretty large, and the MIN_VALUE is pretty small. You might think that means that

JavaScript can represent a lot o f numbers, but the actual number o f numbers JavaScript can represent is
much smaller than you might think. Why? Because both the MAX_VALUE and MIN_VALUE numbers are
represented as floating po int numbers and floating po int numbers are not always precise. Notice that the
largest value has only 17 decimals, which means it is only precise in the first 17 places. Beyond that number
of places, it's all zeros, which means you couldn't accurately represent the number
1.7976931348623157000000001e+308, fo r instance. Floating po int numbers are useful in some
circumstances when you're working with big numbers and you don't need precision.

When you do need precision, you'll want to use integers, and you'll need to know the largest (and smallest)
integer that JavaScript can represent. Let's take a look at the largest integer value in JavaScript, 2 raised to the
power o f 53:

INTERACTIVE SESSION:

> Math.pow(2, 53)
9007199254740992

This is a pretty big number too, but it's a lo t smaller than Number.MAX_VALUE. JavaScript can represent all
the integer values from zero up to this number precisely. That gives you a lo t o f numbers to play with and it's
unlikely that you'll ever need a larger number than this (this also applies to the smallest integer number,
Math.pow(2, -53)).

Understanding how computers represent numbers could be a whole course in and o f itself, so we won't go
any deeper into the topic now. If you're interested in exploring this topic further, check out the ECMAScript
specification (the specification on which JavaScript is based), and the Wikipedia page on binary-coded
decimal numbers.

Note
We're assuming you're using a modern browser on a modern computer, and Math.pow(2, 53) is
based on the ability o f JavaScript to represent 64-bit numbers, which modern browsers on
modern computers can do. If, fo r some reason, you're on an o lder computer with an o lder
browser, then your maximum number might be based on 32-bit numbers instead.

To Inf inity (But Not Beyond)

You might remember from math class that if you divide by 0 , you get infinity. When you begin programming,
this can cause problems because if you try to represent infinity in some programming languages, well, let's
just say your computer won't be too happy.

JavaScript, however, is more than happy to represent infinity:

INTERACTIVE SESSION:

> var zero = 0;
undefined
> var crazy = 3/zero;
undefined
> crazy
Infinity

Instead o f complaining when you divide by 0 , JavaScript just returns the value Inf init y. What is Inf init y at
least in JavaScript? (I suppose we may never know in the real world.)

INTERACTIVE SESSION:

> typeof crazy
"number"

In JavaScript, Inf init y is a number (and so is -Inf init y). Here's an experiment you can run if you like, but be
prepared to close your browser window, because this is an experiment that will never end:

http://ecma262-5.com/ELS5_HTML.htm#Section_8.5
http://en.wikipedia.org/wiki/Binary-coded_decimal

OBSERVE:

> var counter = 0;
undefined
> while (counter < crazy) {
 counter++;
 console.log(counter);
 }

1
2
3
... forever

So although you can represent Inf init y in your programs, that doesn't mean you can ever reach it. You can
test fo r it to prevent mistakes though:

INTERACTIVE SESSION:

> if (crazy == Infinity) { console.log("stop!"); }
stop!
⋖ undefined

Not a Number

One final interesting number you should know about is NaN, o r "Not a Number". Wait, something that means
"Not a Number" is a number? Yes! Another oddity in the world o f JavaScript. Give it a try:

INTERACTIVE SESSION:

> var invalid = parseInt("I'm not a number!");
undefined
> invalid
NaN
> typeof invalid
"number"

Here, we attempt to parse the string, "I'm not a number" into an integer. Clearly this will fail because there's
nothing in the string, "I'm not a number" that resembles an integer. So what is the result in the variable
invalid? Well, it's NaN, when we check the type o f invalid, we see that it is indeed a "number", even though
the value is NaN.

You might think that you can test to see if a result is NaN like this:

INTERACTIVE SESSION:

> if (invalid == NaN) { console.log("invalid is not a number!"); }
undefined

It doesn't work though. Go ahead. Try it now. You won't see the conso le message "invalid is not a number!"

Instead, to test to see if a variable is not a number, you need to use the built- in function, isNaN() :

INTERACTIVE SESSION:

> if (isNaN(invalid)) { console.log("invalid is not a number!"); }
invalid is not a number!
⋖ undefined

Be careful with isNaN() though. What do you expect if you write:

INTERACTIVE SESSION:

> isNaN("3")
false

You might have expected to see the result true (meaning that the string "3" is not a number), but we get false
(meaning that the string "3" is a number). Why? Because isNaN() attempts to convert its argument to a
number before it checks to see if it's not a number. In the case o f "3", JavaScript succeeds. Think o f this code
as do ing the equivalent o f parseInt ("3") and passing the result, 3, to isNaN() . This behavior is widely
considered to be a bug in JavaScript and may be fixed in a future version. In the meantime, just make sure
you know how isNaN() works so you can be prepared in case the value you pass to it can be converted to a
number.

Objects

We've spent a lo t o f time in the world o f primitives, so let's head on over to the world o f objects fo r a while. At
this po int, you've probably had quite a bit o f experience with objects, but let's do a quick review, to make sure
you're set up for some of the more advanced object lessons to come.

Objects are co llections o f properties. Properties can be primitive values, o ther objects, o r functions (which are
called met ho ds when they are inside an object). Let's take a look at an example o f an object. We'll go ahead
and create a simple HTML file to ho ld our object (it's easier than typing at the prompt in the conso le):

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> Objects </title>
 <meta charset="utf-8">
 <script>
 var person = {
 name: "James T. Kirk",
 birth: 2233,
 isEgotistical: true,
 ship: {
 name: "USS Enterprise",
 number: "NCC-1701",
 commissioned: 2245
 },
 getInfo: function() {
 return this.name + " commands the " + this.ship.name;
 }
 };
 </script>
</head>
<body>
</body>
</html>

 Save this as o bject s.ht ml in your /AdvJS fo lder, and then . You won't see anything in the
page, so open up the conso le (and reload the page, just to be sure). Since we defined perso n as a global
variable, we can use it in the conso le:

INTERACTIVE SESSION:

> person.getInfo()
"James T. Kirk commands the USS Enterprise"

The perso n object contains properties with primitive values and values that are o ther objects. We say that the
perso n.ship object is nested inside the perso n object. You can nest objects within objects within objects
and so on, as deep as you'd like to go (although there is a limit to how deep you can go, you're unlikely to hit
it in a normal program), but keep in mind that the more nested objects you have, the more inefficient your
object becomes. Also note that the most deeply nested object must have properties that are either primitive
values or methods (in order fo r the nesting to stop).

Adding and Delet ing Propert ies

One coo l thing about JavaScript objects is that they are dynamic, that is, you can change the properties at any
time by changing their values, or even by adding or deleting properties:

INTERACTIVE SESSION:

> person.title
undefined
> person.title = "Captain";
"Captain"
> person.title
"Captain"
> person
Object {name: "James T. Kirk", birth: 2233, isEgotistical: true, ship: Object, g
etInfo: function}
birth: 2233
getInfo: function () {
isEgotistical: true
name: "James T. Kirk"
ship: Object
title: "Captain"
__proto__: Object

Here, we got the value o f a property that doesn't exist in perso n, perso n.t it le . The result is undef ined,
which we'd expect. Next, we set the property t it le in person by defining it, and giving it the value "Captain."
Now, we can get the value o f the property using person.title. When we display the value o f perso n in the
conso le (just by typing the name of the object, and pressing Ent er), we see that t it le has been added t o
t he o bject , as if we'd had it there all along. (Note that we inspected the details o f the perso n object by
clicking on the arrow next to the object in Chrome, which exposes all o f the details in the conso le.)

Now, suppose you want to remove the t it le property:

INTERACTIVE SESSION:

> delete person.title
true
> person.title
undefined
> person
Object {name: "James T. Kirk", birth: 2233, isEgotistical: true, ship: Object, g
etInfo: function}
birth: 2233
getInfo: function () {
isEgotistical: true
name: "James T. Kirk"
ship: Object
__proto__: Object

delet e removes the entire property, no t just the value. The property no longer exists in the object, so when
we try to get its value, we get undef ined again. When we inspect the object, we can see that the title property
is gone.

Here's a screenshot o f this conso le interaction in Chrome after loading o bject s.ht ml:

What 's the Type of an Object?

Are you wondering what the type o f an object is? Go ahead and test using t ypeo f in the conso le:

INTERACTIVE SESSION:

> typeof person
"object"

In this case, JavaScript returns the string "object" when we ask for the type o f the object perso n. That's good.

Enumerating Object Properties

JavaScript has the capability to examine the properties o f an object in the program itself. This is known as
t ype int ro spect io n. Let's take a look at an example o f that. Modify o bject s.ht ml as shown.

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> Objects </title>
 <meta charset="utf-8">
 <script>
 var person = {
 name: "James T. Kirk",
 birth: 2233,
 isEgotistical: true,
 ship: {
 name: "USS Enterprise",
 number: "NCC-1701",
 commissioned: 2245
 },
 getInfo: function() {
 return this.name + " commands the " + this.ship.name;
 }
 };

 for (var prop in person) {
 console.log(person[prop]);
 }
 </script>
</head>
<body>
</body>
</html>

 and . You see each property o f the object displayed in the conso le—here's what it looks like
in Chrome:

Let's take a closer look at how we did this:

OBSERVE:

for (var prop in person) {
 console.log(person[prop]);
}

We used a f o r loop to loop through all the properties in the object, but instead o f the traditional f o r loop you
might be used to , we used a f o r/in loop (you may have used this in a previous course when accessing keys
and values in Local Storage). In the f o r/in statement we declare a variable: pro p. Each time through the loop,
pro p gets the property name of the next property in the object perso n. When we go through an object to
access each o f its properties, we call this enumerating an object's properties.

Then, inside the loop, we display the value o f the object's property in the conso le. We use the bracket
no t at io n to access the object's property. You can try this at the conso le yourself to see how it works:

INTERACTIVE SESSION:

> person["name"]
"James T. Kirk"

To access an object's property value with bracket notation, you put the name of the property in quotation
marks within brackets, next to the name of the object.

This notation is handy because it allows you to access the property o f an object without knowing the name of
the property in advance (look back at the f o r/in loop and see that we're using a variable, pro p, as the
property name within the loop).

When would you use this? Well, you might want to copy a property from one object to another, but only if the
property does exist. You could use bracket no t at io n to check to see if the property exists first. Or perhaps
you are loading JSON data from a file using XHR (Ajax), and creating or modifying objects from the data. We'll
see a couple o f examples later in the course where the capability to enumerate an object's properties will
come in handy.

Primitives That Act like Objects

Earlier we said that you can split JavaScript values into two groups: primitives and objects. This suggests that
they are completely separate, and they are...fo r the most part. However, you should know that some
primitives—specifically, numbers, strings and boo leans— can act like objects sometimes.

Try this:

INTERACTIVE SESSION:

> var s = "I'm a string";
undefined
> s
"I'm a string"
> s.length
12
> s.substring(0, 3);
"I'm"

In the first line, we declare and initialize the variable s to be a string, "I'm a string." As you know, a string is a
primitive. Yet we ask for the length o f the string, s.lengt h, and the first three letters o f the string,
s.subst ring(0, 3) , treating the string s as if it were an object. After all, only objects have properties, like
lengt h, and methods, like subst ring() , right? So, what's go ing on?

We have a primitive that's acting like an object! When you try to access properties and methods that act on a
primitive, JavaScript converts the primitive to an object, uses a property or calls a method, and then converts it
back to a primitive, all behind the scenes. In this example, the string s is changed to a St ring object
temporarily so we can use the lengt h property, and then changed back to a primitive. Then, it's converted to a
St ring object so we can call the subst ring() method, and then changed back to a primitive again.

The same thing can happen with numbers and boo leans:

INTERACTIVE SESSION:

> var num = 32;
undefined
> num
32
> num.toString()
"32"
> var b = true;
undefined
 > b.toString()
"true"

In practice, there are not many times you'll need your numbers and boo leans to act like objects, except when
you convert them to strings, which happens whenever you use co nso le.lo g() like this:

INTERACTIVE SESSION:

> console.log("My num is " + num);
My num is 32
⋖ undefined

Here, num is changed temporarily to a Number object, its t o St ring() method is called, the result is
concatenated with "My num is," and the result is displayed in the conso le (and num is converted back to a
primitive). All o f that happens behind the scenes so you don't have to worry about it.

Similar to built- in object types like Array and Dat e and Mat h, JavaScript has the built- in object types
Number, St ring and Bo o lean. You'll rarely use these though, and you should never do this when you need
just a simple primitive value, like 3:

INTERACTIVE SESSION:

> var num = new Number(3);
undefined
> num
Number {}

Why? Because JavaScript will always convert a primitive, like 3, to an object when it needs to , without you
having to worry about it. So, primitives are converted to objects behind the scenes sometimes, but you'll
probably never need to use those objects directly yourself.

JavaScript is Dynamically Typed

If you've had exposure to o ther languages, you might have run across languages in which you must declare
t he t ype o f a variable when you create a new variable, like this:

OBSERVE:

int x = 3;
String myString = "test";

In these languages, once you declare a variable to be a certain type, that variable must always be that type. If
you try to put a value o f a different type into the variable, you'll get an error. For instance, you can't do
something like this:

OBSERVE:

x = myString;

Here, we tried to set the variable x to a string, but we can't because x is declared to be an int (an integer
number). This line o f code will cause an error.

These languages are known as "statically typed" languages. "Static" because the types o f variables can't
change.

Contrast this with JavaScript, which is a dynamically t yped language . In JavaScript, you declare variables
with no type, and you can change the types o f the values in those variables at any time you want:

INTERACTIVE SESSION:

> var x = 3;
undefined
> var myString = "test";
undefined
> x = myString;
"test"
> x
"test"

So x starts out as a number, and ends up as a string. JavaScript has no problem with this.

You can change the type o f a variable, but that doesn't mean you should. Why? Well, if you change the type o f
a variable in the middle o f your program, you might fo rget you did and expect the variable to contain one kind
of value, when in fact it might contain a different kind o f value, which could cause bugs in your code.

Sometimes you'll take advantage o f the fact that variables can contain any type; but most o f the time, it's best
to stick with one type for a given variable throughout your program.

In this lesson, you learned about primitives and objects that you might not have encountered before when programming in
JavaScript. Understanding the types in JavaScript more deeply is important as you progress to more advanced programming.
For instance, you might need to know whether to expect null o r undefined if you're checking to see if a method succeeds or fails
in creating a new object, o r when to check to see if the result o f a method is NaN if the user submits the wrong kind o f data in a
form.

Practice your new skills with the quizzes and pro jects before moving on to the next lesson, where we'll continue to explore
primitives and objects and how they behave when you start comparing them.

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Truthy, Falsey, and Equality
Lesson Objectives

When you complete this lesson, you will be able to :

test fo r null and undefined.
test values for truthiness.
compare values using the strict equality operator.
examine and compare the property names and the property values o f objects.
design appropriate conditional tests when using equality operators and typecasting.
explore equality o f objects.

You might think that testing for the equality o f two values is simple and straightforward. Well actually, sometimes it is, and
sometimes it's not. In JavaScript, when we compare two values, we get a result: true or false. However, determining the result o f
a comparison is not always as straightforward as you might think, because along with true and false, we also have truthy and
falsey values. In addition, testing equality fo r primitives is different from testing equality fo r objects. In this lesson, you'll learn
what's really happening behind the scenes when you compare values.

For the examples in this lesson, you're welcome to create an HTML file with a <script> or use the conso le. Either is fine. We'll
show examples o f both.

Truthy, Falsey, and Equality
In JavaScript, we compare values all the time. For instance, you might do this:

OBSERVE:

var weather = "sunny";
if (weather == "sunny") {
 console.log("It's sunny today!");
} else {
 console.log("It must be rainy.");
}

We compare a string value with another string value using a conditional expression, weat her == "sunny" , to see if
they are equal, and the result o f that conditional expression is either t rue o r f alse (in this case, it's t rue). In an if
statement, we use conditional expressions to determine whether to execute a block o f code. If the expression in the
parentheses results in t rue , the first block o f code is executed; if it's not, the else block is executed (if there is one—if
there isn't, execution just continues with the next line o f code after the if statement).

We can do the same thing with values that are directly true or false like this:

OBSERVE:

var isItSunny = true;
if (isItSunny) {
 console.log("It's sunny today!");
} else {
 console.log("It must be rainy.");
}

Notice that here, we don't have to compare isIt Sunny to t rue , because we know that isIt Sunny is a boo lean value.
This means we can shorten the expression to isIt Sunny.

In many cases, we're working with expressions that are true or false, but sometimes we work with values that are truthy
or falsey. What does this mean? It means that some values aren't directly true or false, but are interpreted by JavaScript
to mean true or false in certain situations, like conditional expressions. Here's an example (before you try these in the
conso le yourself, see if you can guess what you'll see as the result o f each statement):

OBSERVE:

if (1 == 1) { console.log("1 really does equal 1"); }
if (1) { console.log("1 is true"); }

Go ahead and try these statements in the conso le (remember that you might have to load an HTML page to access the
conso le):

INTERACTIVE SESSION:

> if (1 == 1) { console.log("1 really does equal 1"); }
1 really does equal 1
⋖ undefined
> if (1) { console.log("1 is true"); }
1 is true
⋖ undefined

The first statement is straightforward; we compare the value 1 with the value 1, so o f course we expect them to be
equal, and expect to see the conso le log message, "1 really does equal 1."

So what about the second statement? There, we test the value 1 to see if it's true or false, but 1 isn't either true or false,
it's 1, right? Yet the result o f this statement is that we do see the conso le log message "1 is true," which means that
JavaScript must think that 1 is true. Hmmm. That's perplexing.

What about this next example; what do you think you'll get?

OBSERVE:

if (0) { console.log("0 is true!"); }

Try it. This time we don't see the conso le log message, which means JavaScript must think that 0 is false:

INTERACTIVE SESSION:

> if (0) { console.log("0 is true!"); }
undefined

Try one more experiment:

INTERACTIVE SESSION:

> if (-5) { console.log("-5 is true!"); }
-5 is true!
⋖ undefined

That'snteresting. JavaScript thinks that -5 is true!

So it turns out that numbers o ther than 0 are truthy, and 0 is falsey. We use those terms to indicate that even though -5
isn't true, it results in true in a conditional expression. Same with 0 ; even though 0 isn't false, it results in false in a
conditional expression.

Experiment a bit on your own. For instance, is NaN truthy or falsey? What about Inf init y?

Values That are Truthy or Falsey

We need to find out which o ther values are truthy and falsey in JavaScript. Let's do some testing in the
conso le to see how JavaScript treats values in truthy and falsey situations. We'll begin with undef ined.
Before you look at the example below, do you think undef ined is truthy or falsey?

INTERACTIVE SESSION:

> var myValue;
undefined
> if (myValue) { console.log("undefined is truthy!"); }
undefined
> if (!myValue) { console.log("undefined is falsey!"); }
undefined is falsey!
⋖ undefined

Remember that ! means NOT, so if myValue is false, then !myValue is true. So, undef ined is falsey,
because in the second expression, myValue reso lves to f alse , and then we say "NOT false" with !myValue ,
which results in t rue , so we execute the if statement block to display the message "undefined is falsey!". Is
that what you expected; that is, that undef ined is falsey? Here's how this session looks in the Chrome
conso le:

What about null? Can you guess?

INTERACTIVE SESSION:

> myValue = null;
null
> if (myValue) { console.log("null is truthy!"); }
undefined
> if (!myValue) { console.log("null is falsey!"); }
null is falsey!
⋖ undefined

So, null is also falsey. It kind o f makes sense that if undef ined is falsey, then null would also be falsey,
right?

Okay, we've looked at numbers, undefined and null. What about strings?:

INTERACTIVE SESSION:

> var myString = "a string";
undefined
> if (myString) { console.log("myString is truthy!"); }
myString is truthy!
⋖ undefined
> if (!myString) { console.log("myString is falsey!"); }
undefined

In this case, we see the string "myString is true" which means that mySt ring is truthy. How about if we set
mySt ring to the empty string, "". Now do you think mySt ring will be truthy or falsey?

INTERACTIVE SESSION:

> myString = "";
""
> if (myString) { console.log("myString is truthy!"); }
undefined
> if (!myString) { console.log("myString is falsey!"); }
myString is falsey!
⋖ undefined

So a string with characters is truthy, but an empty string is falsey. Experiment a bit. What if mySt ring is a
string with one space in it, like this: " "?

Shortcuts using t ruthy and f alsey results

Knowing that undef ined, null, and "" are all falsey values, can you think o f a good way to shorten the code
below?

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> Truthy, Falsey, Equality </title>
 <meta charset="utf-8">
 <script>
 var myString = prompt("Enter a string");;
 if (myString == null || myString == undefined || myString == "") {
 console.log("Please enter a non-empty string!");
 } else {
 console.log("Thanks for entering the string '" + myString + "'");
 }
 </script>
</head>
<body>
</body>
</html>

 Save this in your /AdvJS fo lder as st ringT est .ht ml, and . Open the conso le (you might
need to reload the page to see the output in the conso le). Enter a string and note the message you see. Try
entering different values at the prompt, like null (just click OK), "", and "test", fo r instance.

Now that you know about truthy and falsey values, you can shorten this code:

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> Truthy, Falsey, Equality </title>
 <meta charset="utf-8">
 <script>
 var myString = prompt("Enter a string");;
 if (myString == null || myString == undefined || myString == "" !myStrin
g) {
 console.log("Please enter a non-empty string!");
 } else {
 console.log("Thanks for entering the string '" + myString + "'");
 }
 </script>
</head>
<body>
</body>
</html>

 and again (or reload if you still have the page open). You get the same behavior as before,
but with a much shorter conditional expression. Again, try entering a few different values to make sure this
works as you expect. Try replacing the prompt fo r mySt ring to undef ined, null, the empty string, or
something else.

In cases where you need to test to make sure that a variable has a truthy value, but you don't care what that
value is exactly, you can use this type o f shortcut to save yourself some typing.

Be careful though. In cases where you need to test fo r a specific value, you also need to understand implied
typecasting. We'll talk about next.

Implied Typecasting

Does 88 equal "88?" That's an interesting question. Let's see:

INTERACTIVE SESSION:

> var myNum = 88;
undefined
> var myString = "88";
undefined
> if (myNum == myString) {
 console.log("My number is equal to my string!");
 }
My number is equal to my string!
⋖ undefined

JavaScript converts the string "88" into a number before do ing the comparison between myNum and
myString, so the comparison actually happens between 88 and 88. Of course those values are equal, so the
result is true, and we see the conso le log message, "My number is equal to my string!"

This process o f converting a string to number before do ing a comparison or another operation is called
"implied typecasting" (also known as type coercion or type conversion). JavaScript does implied typecasting
as needed. For instance, whenever you do something like this:

INTERACTIVE SESSION:

> var age = 29;
undefined
> var output = "My age is " + age;
undefined
> output
"My age is 29"

Here you are using JavaScript's ability to convert the variable age from a number to a string automatically, so
it can be concatenated with the string "My age is."

When converting strings and numbers, be careful because the result may not always be what you expect. You
know that sometimes JavaScript converts a string to a number, like when we compare 88 and "88," and you
know that sometimes JavaScript converts a number to a string, like when you want to concatenate a number
to a string. So what do you think the result will be when we try to add a string that contains a number to a
number?

INTERACTIVE SESSION:

> var x = 4;
undefined
> x = x + "4";
"44"
> x
"44"

You might've expected to get 8 .

Let's try another experiment:

INTERACTIVE SESSION:

> var myString = "test";
undefined
> if (myString) {
 console.log("'test' is truthy");
 } else {
 console.log("'test' is falsey");
 }
'test' is truthy
⋖ undefined
> if (myString == true) {
 console.log("'test' is true");
 } else {
 console.log("'test' is false");
 }
'test' is false
⋖ undefined

Notice that in the first if statement, if (mySt ring) ..., we rely on the truthy-ness or falsey-ness o f mySt ring
to result in true or false to determine the flow o f execution. However, in the second if statement, if
(mySt ring == t rue) ..., we compare the value o f mySt ring with the boo lean t rue , explicitly. JavaScript
doesn't do implied typecasting and conversion o f mySt ring to true or false here.

As you can probably tell, it's a bit tricky to know for sure in every case exactly how JavaScript will (o r won't)
typecast and convert a value for comparison. One way that you can be more confident that you'll get the result
you expect is to use the st rict equalit y o perat o r === , in place o f the equalit y o perat o r, == .

For more information about how JavaScript performs type conversions, see the ECMAScript specification.

http://www.ecma-international.org/ecma-262/5.1/#sec-9

Testing Equality

JavaScript has two operators for testing equality, == and === . You've probably been using == in your
JavaScript programming, but consider using === instead (at least sometimes). Let's take a closer look at the
difference between these two operators, and why you might use one over the o ther.

We'll begin by looking at an example o f these two operators in action:

INTERACTIVE SESSION:

> null == undefined
true
> null === undefined
false

The equality operator, == , attempts to do implied typecasting before it compares two values. So, in the first
expression above, JavaScript sees that you're trying to compare values o f two different types, and so, tries to
convert one type to the o ther in order to do the comparison. In this case, JavaScript could either convert
undef ined to null, o r null to undef ined (JavaScript can do it either way), and then the two values are
equal.

However, the strict equality operator, === , does not do implied typecasting. Instead, it compares the two
values as they are. If the types o f the two operands are different, then the result is false immediately. Let's see
what happens when we use st rict equalit y on our previous comparison o f 88 with "88":

INTERACTIVE SESSION:

> var myNum = 88;
undefined
> var myString = "88";
undefined
> if (myNum === myString) {
 console.log("My number is equal to my string!");
 } else {
 console.log("A number shouldn't really be equal to a string!");
 }
A number shouldn't really be equal to a string!
⋖ undefined

Let's try st rict equalit y on a falsey value, like 0 :

INTERACTIVE SESSION:

> var zero = 0;
undefined
> if (zero == false) {
 console.log("zero is a falsey value!");
 }
zero is a falsey value!
⋖ undefined
> if (zero === false) {
 console.log("zero is a falsey value!");
 } else {
 console.log("Now we don't convert zero to false");
 }
Now we don't convert zero to false
⋖ undefined

So, strict equality prevents conversion o f a falsey value, like 0 , to false.

Just like the == equality operator has a negative version, != (meaning not equal to), the strict equality operator

also has a negative version, !== . The only difference between != and !== is that != attempts to typecast its
operands to the same type, while !== does not.

Do some experimenting with the four operators: == , != , === and !== . You might be surprised by what you
find.

Some programmers always use strict equality (and strict inequality) rather than equality (and inequality).
However, sometimes you might want to take advantage o f JavaScript's ability to do typecasting. If you do, be
cautious and make sure you know exactly how that typecasting is go ing to work on the types o f values you
expect.

You can get all the gory details o f the algorithms used by the equality operator and the strict equality operator
(also known as the identity operator) in the ECMAScript specification.

Objects and Truthy-ness

So far, we've been looking at the truthy-ness and falsey-ness o f primitive values like numbers, strings, null
and undefined. What about objects?

INTERACTIVE SESSION:

> var o = { name: "object" };
undefined
> o
Object {name: "object"}
> if (o) {
 console.log("This object is truthy!");
 }
This object is truthy!
⋖ undefined

So it looks like objects are truthy. What about empty objects? (Remember that empty strings are falsey, so
you might expect that empty objects are also falsey.)

INTERACTIVE SESSION:

> var p = {};
undefined
> if (p) {
 console.log("This object is truthy!");
 } else {
 console.log("This object is falsey!");
 }
This object is truthy!
⋖ undefined

Interesting. Even a completely empty object, like p, is still truthy. But...

INTERACTIVE SESSION:

> p == true
false
> p == false
false

Even though p might be truthy, it's not equal to true (or false) using the equality operator, so no type
conversion is happening here.

Objects and Equality

Let's do a few more tests in the conso le and compare our empty object, p, to some other values:

http://www.ecma-international.org/ecma-262/5.1/#sec-11.9

INTERACTIVE SESSION:

> var p = {};
undefined
> p == 0
false
> p == null
false
> p == undefined
false
> p == "{}"
false
> p == {}
false

In this example, we use the equality operator, == , because we want JavaScript to try to typecast the values for
comparison. As you can see, all o f the results are false, which means that even if JavaScript is able to
typecast, the comparison is still false.

Most o f these results are probably expected, but that last one sure isn't! We know that p is an empty object, {
} , so why isn't p equal to another empty object? Aren't they the same thing?

Go ahead and create a file with two objects so we can experiment:

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> Comparing objects </title>
 <meta charset="utf-8">
 <script>
 var book1 = {
 title: "Harry Potter",
 author: "JK Rowling",
 published: 1999,
 hasMovie: true
 };
 var book2 = {
 title: "Harry Potter",
 author: "JK Rowling",
 published: 1999,
 hasMovie: true
 };

 if (book1 == book2) {
 console.log("The two books are the same");
 } else {
 console.log("The two books are different");
 }
 </script>
</head>
<body>
</body>
</html>

Here, we create two book objects using object literals, and then test to see if the books are equal.

 Save this in your /AdvJS fo lder as o bject sT est .ht ml, and . In the conso le, you see the
message, "The two books are different."

The two books, bo o k1 and bo o k2, are exactly the same: they have the same properties. All the property
names are the same, the property values are the same, and the number o f properties is the same. So why
aren't they equal? (Note that we're using the equality operator here to test equality; we know the types o f the

two objects are the same, so we don't have to worry about any typecasting happening).

The two objects are not equal because o f an important difference in how primitive values are stored and how
objects are stored in the computer's memory. When you create a primitive value, let's say:

OBSERVE:

var x = 3;

the computer allocates a bit o f memory, gives it the name "x", and saves the value 3 in that bit o f memory:

Now, compare that to what happens when you create an object, let's say bo o k1 from the example above:

OBSERVE:

var book1 = {
 title: "Harry Potter",
 author: "JK Rowling",
 published: 1999,
 hasMovie: true
};

In this case, the computer names and allocates some memory for each o f the properties in the object, and
then allocates a separate bit o f memory for the variable name, and in that memory stores a value that po ints
to the place in memory where the object is actually stored. This is called an o bject ref erence . So the
variable bo o k1 doesn't contain the object itself; it actually contains a reference to the object. Like this:

In this case, the object value (that is, all the properties in the object, plus a few other things about the object) is
stored at memory location 495823 (I just made that up for this example, but you get the idea), and the variable
bo o k1 contains that location (in the same way that x contains 3).

Now let's see what happens when we create the second book object, bo o k2:

OBSERVE:

var book2 = {
 title: "Harry Potter",
 author: "JK Rowling",
 published: 1999,
 hasMovie: true
};

Even though the properties are exactly the same, a completely separate book object is created and stored in
a completely different part o f memory:

The variable bo o k2 contains the memory location o f this second object, and the memory location is different
from the memory location for bo o k1.

So when we compare bo o k1 and bo o k2:

OBSERVE:

if (book1 == book2) {
 console.log("The two books are the same");
} else {
 console.log("The two books are different");
}

the values that are compared are the memory locations o f the two objects. They are not equal, so we see the
message "The two books are different."

Compare this to what happens when we compare primitive values:

INTERACTIVE SESSION:

> var x = 3;
undefined
> var y = 3;
undefined
> if (x == y) { console.log("x and y are the same"); }
x and y are the same
⋖ undefined

In the example above where we compared two book objects, we used lit eral objects fo r the books. Do you
think the the result would be the same when if we used an object constructor? Let's see:

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> Comparing objects, take two </title>
 <meta charset="utf-8">
 <script>
 function Book(title, author, published, hasMovie) {
 this.title = title;
 this.author = author;
 this.published = published;
 this.hasMovie = hasMovie;
 }
 var book1 = new Book("Harry Potter", "JK Rowling", 1999, true);
 var book2 = new Book("Harry Potter", "JK Rowling", 1999, true);
 if (book1 == book2) {
 console.log("book1 is equal to book2");
 } else {
 console.log("book1 is NOT equal to book2");
 }
 </script>
</head>
<body>
</body>
</html>

Now we use a constructor function, Bo o k() , to create two books, and then test to see if they are equal.
Save this in your /AdvJS fo lder as o bject sT est 2.ht ml, and . In the conso le, you see the
message, "book1 is NOT equal to book2."

The result is the same because we are creating two completely different book objects, even though they use
the same constructor and have the same properties.

Okay, so knowing what you know about how objects are stored in memory, what do you think happens when
we change the program like this?:

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> Comparing objects, take two </title>
 <meta charset="utf-8">
 <script>
 function Book(title, author, published, hasMovie) {
 this.title = title;
 this.author = author;
 this.published = published;
 this.hasMovie = hasMovie;
 }
 var book1 = new Book("Harry Potter", "JK Rowling", 1999, true);
 var book2 = new Book("Harry Potter", "JK Rowling", 1999, true);
 var book2 = book1;
 if (book1 == book2) {
 console.log("book1 is equal to book2");
 } else {
 console.log("book1 is NOT equal to book2");
 }
 </script>
</head>
<body>
</body>
</html>

 and . In the conso le, you see the message "book1 is equal to book2." Why? Because when
we assign the value o f book1 to book2 (var book2 = book1), we store the memory location o f the data in
bo o k1 into bo o k2, like this:

So now, when we compare the values o f book1 and book2, they are the same: they are both values that po int
to the same memory location.

Let's update the program one more time:

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> Comparing objects, take two </title>
 <meta charset="utf-8">
 <script>
 function Book(title, author, published, hasMovie) {
 this.title = title;
 this.author = author;
 this.published = published;
 this.hasMovie = hasMovie;
 }
 var book1 = new Book("Harry Potter", "JK Rowling", 1999, true);
 var book2 = book1;
 if (book1 == book2) {
 console.log("book1 is equal to book2");
 } else {
 console.log("book1 is NOT equal to book2");
 }
 book1.star = "Harry";
 console.log(book1);
 console.log(book2);
 </script>
</head>
<body>
</body>
</html>

 and . Take a look at the two book objects that we display in the conso le. Notice anything
interesting?

OBSERVE:

Book {title: "Harry Potter", author: "JK Rowling", published: 1999, movie: true,
 star: "Harry"}
Book {title: "Harry Potter", author: "JK Rowling", published: 1999, movie: true,
 star: "Harry"}

In the code we added a new property, st ar to bo o k1, and set its value to "Harry." Yet when you look at the
two objects in the conso le, you can see that both bo o k1 and bo o k2 now have the property st ar, with the
value "Harry" . How did this happen!?

Well, remember that bo o k2 po ints to the same location in memory that bo o k1 does. So if we change the
data in bo o k1, we're also changing the data in bo o k2 because they are the same object.

What do you think would happen if we changed the title o f bo o k2? Try changing the title o f bo o k2 to "Harry
Potter and the Sorcerer's Stone." What do you see when you display bo o k1 and bo o k2?

Now, you might be asking, "If I can't compare two different objects using the equality operator to see if they
are the same (that is, that they have the same properties and values), how do I know if two objects are the
same?"

The answer is that you have to look at each property o f an object separately. This isn't too hard to do if the
properties in an object are all primitive values (numbers, strings, boo leans). However, if your objects have
nested objects and/or methods, then it gets a bit trickier because then the so lution depends on what you
mean by "equality" in the case o f two objects. What do you think it means for one object to be "equal" to an
other? A good topic fo r you to think about.

Various JavaScript libraries have tackled this question by implementing functions that check equality o f
objects. Be cautious though because different libraries may have different ideas about what equality o f objects
means. Make sure the library function works as you expect. For example, you can use the Underscore.js
library's isEqual() function to test the equality o f objects.

We covered a lo t o f ground in this lesson, including truthy and falsey values, implied typecasting and what can happen when
you compare two values, two different kinds o f equality operators, and the difference in comparing primitive values and object

http://underscorejs.org/#isEqual

values. Whew! That's lo ts o f detail, some of which you may not have encountered before, but that you'll need to know as you
get into more advanced JavaScript programming.

Take a break to rest your brain, and then tackle the quizzes and pro jects to help it all sink in before you move on to the next
lesson.

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Constructing Objects
Lesson Objectives

When you complete this lesson, you will be able to :

construct objects with your own constructors, and new.
construct object literals.
construct empty objects and add new properties.
compare how a function works as a function, and as a constructor.
initialize an object's property values in a constructor.
use the conditional operator.
explore the value o f t his when an object is created.
construct arrays in two ways.

Just about everything in JavaScript is an object, so understanding objects is key to understanding and programming JavaScript.
In this lesson, we'll delve into how we create objects in JavaScript.

Constructing JavaScript Objects
When you construct an object in JavaScript, you are creating a dynamic co llection o f property names and values.
You've already seen a couple o f different ways to create objects, using a constructor function (like the Bo o k() function
we used in the previous lesson), and using object literals.

Let's take a closer look at three ways you can construct objects and how they are similar to and different from each
other.

Constructing an Object with a Constructor Function

The first way to contruct objects that we'll check out uses the a constructor function. In the previous lesson, we
used a constructor function, Bo o k() , to create book objects, passing in arguments for title, author, the date
the book was published, and whether it had been made into a movie. We'll use that same object here, except
we'll add a new method, display() , to the object:

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> Constructing objects </title>
 <meta charset="utf-8">
 <script>
 function Book(title, author, published, hasMovie) {
 this.title = title;
 this.author = author;
 this.published = published;
 this.hasMovie = hasMovie;

 this.display = function() {
 console.log(this);
 };
 }
 var book1 = new Book("The Hound of the Baskervilles", "Sir Arthur Conan Doyl
e", 1901, true);
 book1.display();
 </script>
</head>
<body>
</body>
</html>

 Save this in your /AdvJS fo lder as o bject Co nst r.ht ml, and . Open the conso le (and
reload the page if you need to), and you see that the constructor function created a book object:

(This screenshot is in the Chrome conso le, but it should look similar in IE, Firefox, and Safari).

A constructor function is just like any o ther function, but we call a constructor function differently from other
functions: we use the word new.

OBSERVE:

var book1 = new Book("The Hound of the Baskervilles", "Sir Arthur Conan Doyle",
1901, true);

The word new makes all the difference. The new keyword indicates that we are using a function to construct
an object, rather than just execute code (although a constructor function can do that too). Within the
constructor function, we refer to the object that is being created as t his:

OBSERVE:

function Book(title, author, published, hasMovie) {
 this.title = title;
 this.author = author;
 this.published = published;
 this.hasMovie = hasMovie;

 this.display = function() {
 console.log(this);
 };
}

When you call a function with new, inside that function, a new, empty object is created and the t his keyword is
set to that object. (Inside the function, t his acts just like a local variable, except that you can't set its value
yourself; that's done for you automatically). Then you use t his to set the values o f any properties you want in
that object. At the end o f the function, you don't have to explicitly return the object you're creating; JavaScript
does that fo r you automatically because you used the new keyword when you called the function. The object
that is returned is t his: the new object that was created when you called the function, that has the properties
you set in the function.

Of course any function could return an object if you wanted it to :

INTERACTIVE SESSION:

> function makeObj() { return { x: 1 }; }
undefined
> var myObj = makeObj();
undefined
> myObj
Object {x: 1}

However, in this example, makeObj() is not a constructor function because we didn't call it with new. Instead
we called the function normally, and inside the function, created an object literal on the fly, and returned it to
the caller o f the function makeObj() . These two ways o f creating functions might seem similar, but there are a

few key differences. The value o f t his inside makeObj() is not set to the object that's being created, and if
you don't explicitly return an object from makeObj() , the default return value is undef ined.

These differences in how functions behave, depending on whether you call them with new o r not, is one
reason why we always (as a convention) use an uppercase letter to begin the name of a constructor function
(like Bo o k()), but use a lowercase letter to begin the name of a regular function (like makeObj()). That way,
you can tell at a glance at your code whether a function is designed to be a constructor function.

There's one o ther thing that happens when you create an object by calling a constructor function with new that
doesn't happen when you create objects in o ther ways. Look back at the object we created by calling
makeObj() :

Now compare that to what you saw in the conso le earlier fo r the bo o k1 object (if you still have the page
loaded, you can just type bo o k1 in the conso le to see it again, but make sure you do this in either the
Chrome or Safari conso le specifically):

When you display myObj in the conso le, you see the word Object next to the object:

OBSERVE:

Object {x: 1}

But you see the word "Bo o k" next to the bo o k1 object:

OBSERVE:

Book {title: "The Hound of the Baskervilles", author: "Sir Arthur Conan Doyle",
published: 1901, hasMovie: true, display: function}

In the Book example, we created the bo o k1 object with the Bo o k() constructor function. When you create an
object with a constructor function, JavaScript keeps track o f that function in a property called co nst ruct o r.
co nst ruct o r is a property o f the object, in this case bo o k1, that results from calling the constructor function,
Bo o k() . Now, JavaScript also sets the co nst ruct o r property fo r objects not created with a constructor
function, like the literal object we created and returned from the makeObj() function, but in this case, the
co nst ruct o r property is set to Object () .

You can access the constructor fo r an object:

INTERACTIVE SESSION:

> myObj.constructor
function Object() { [native code] }
> book1.constructor
function Book(title, author, published, hasMovie) {
 this.title = title;
 this.author = author;
 this.published = published;
 this.hasMovie = hasMovie;

 this.display = function() {
 console.log(this);
 };
}

You can think o f the constructor function o f an object, whether it's Bo o k() o r Object () , as determining the
type o f the object. This isn't strictly true like it is in statically typed languages like Java, but it can be a handy
way to describe objects. We'll return to this idea in a later lesson when we talk about the inst anceo f
operator.

For now, the key takeaway for you is to understand how constructing an object using a constructor function
with the new keyword is different from other ways that we create objects.

Constructing an Object Using a Literal

You just saw an example o f creating a literal object and returning it from a function. Let's create another literal
object, another book, so we can compare the result directly with the bo o k1 object we created using a
constructor function. Modify o bject Co nst r.ht ml as shown:

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> Constructing objects </title>
 <meta charset="utf-8">
 <script>
 function Book(title, author, published, hasMovie) {
 this.title = title;
 this.author = author;
 this.published = published;
 this.hasMovie = hasMovie;

 this.display = function() {
 console.log(this);
 };
 }
 var book1 = new Book("The Hound of the Baskervilles", "Sir Arthur Conan Doyl
e", 1901, true);
 book1.display();

 var book2 = {
 title: "The Adventures of Sherlock Holmes",
 author: "Sir Arthur Conan Doyle",
 published: 1892,
 movie: true,
 display: function() {
 console.log(this);
 }
 };
 book2.display();

 </script>
</head>
<body>
</body>
</html>

 and . Open the conso le, and compare bo o k1 and bo o k2 (using Chrome or Safari):

These two objects are similar: both have the same property names, both have a display() method, and the
types o f all the property values are the same. However, if you look at the constructors for bo o k1 and bo o k2,
you'll see (just like in myObj earlier), that the constructor fo r bo o k1 is Bo o k() , because we created it using a
constructor function, but the constructor fo r bo o k2 is Object () because we created it using an object literal:

INTERACTIVE SESSION:

> book1.constructor
function Book(title, author, published, hasMovie) {
 this.title = title;
 this.author = author;
 this.published = published;
 this.hasMovie = hasMovie;

 this.display = function() {
 console.log(this);
 };
 }
> book2.constructor
function Object() { [native code] }

The [nat ive co de] means that the implementation o f the Object () constructor is hidden because it's
internal to the browser.

The property in the objects called __pro t o __ is the last property in both the bo o k1 and bo o k2 objects:

The value o f __pro t o __ fo r bo o k1 is Bo o k, and the value o f __pro t o __ fo r bo o k2 is Object . You might
be thinking that the __pro t o __ property must be related to the constructor function for an object, and you'd be
right (although they are not the same thing).

You also might notice that the co nst ruct o r property is not listed in the bo o k1 and bo o k2 objects'
properties. That's because this property is inherited from the object's pro t o t ype . (As you might guess, the
__pro t o __ property is also related to the pro to type). We'll talk more about pro to types in a later lesson.

What about t his in a literal object? You already know that you can use t his in a method o f an object to refer
to "this object," but unlike in a constructor function, we don't (and can't) use t his to initialize object properties.
Instead, we create properties and initialize them by specifying the name/value pairs in an object, by literally
typing them. (That's why it's called an object literal). The only time t his refers to the object is when you call
one o f its methods. (How t his gets set and what it gets set to is yet another topic we'll come back to in more
depth later).

Constructing an Object Using a Generic Object Constructor

Another way to create an object literal is to start with an empty object, and then add properties to it. You can
create an empty, generic object in one o f two ways:

OBSERVE:

var obj1 = { };
var obj2 = new Object();

Both o f these approaches to create an object do the same thing. You'll see an empty object created the first
way more o ften (because it's a little easier to write), but it's instructive to understand the second way as well.
When you create an object with new Object () , it's just like when you create an object with new Bo o k() ,
except that Object () is a built- in constructor function that you don't have to write yourself. You don't pass any
arguments to Object () to initialize object properties in the constructor function, instead, you add them all
after the object is created. Modify o bject Co nst r.ht ml as shown:

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> Constructing objects </title>
 <meta charset="utf-8">
 <script>
 function Book(title, author, published, hasMovie) {
 this.title = title;
 this.author = author;
 this.published = published;
 this.hasMovie = hasMovie;

 this.display = function() {
 console.log(this);
 };
 }
 var book1 = new Book("The Hound of the Baskervilles", "Sir Arthur Conan Doyl
e", 1901, true);
 book1.display();

 var book2 = {
 title: "The Adventures of Sherlock Holmes",
 author: "Sir Arthur Conan Doyle",
 published: 1892,
 movie: true,
 display: function() {
 console.log(this);
 }
 };
 book2.display();

 var book3 = new Object(); // same as var book3 = { };
 book3.title = "A Study in Scarlet";
 book3.author = "Sir Arthur Conan Doyle";
 book3.published = 1887;
 book3.movie = false;
 book3.display = function() {
 console.log(this);
 };
 book3.display();

 </script>
</head>
<body>
</body>
</html>

We added the exact same properties that we added to bo o k1 and bo o k2, only with some different values,
because it's a different book. bo o k3 also has a display() method, just like bo o k1 and bo o k2.

 and . In the conso le, compare bo o k3 with bo o k2 and bo o k1.

bo o k3 looks similar to bo o k2, because bo o k3 is also an object literal; it was just created in a slightly
different way. Notice that the constructor fo r bo o k3 is also Object () , which you can test in the browser
conso le:

INTERACTIVE SESSION:

> book3.constructor
function Object() { [native code] }

So, What's the Best Way to Make an Object?

You've seen three different ways to construct an object (you'll see a fourth in a later lesson), but which is the
best way?

That depends on the situation. If all you need is a quick, one-off object, then creating an object literal like we
did with bo o k2 o r bo o k3 is probably good enough. However, if you know that you're go ing to need multiple
book objects, writing a constructor function like Bo o k() , that you can use to make many book objects is a
better cho ice. You'll also want to consider whether the objects you're creating are, say, Bo o ks o r
Magazines. As you've seen, objects created with a constructor function have that extra information about
how they were created, which can be useful. We'll see an example o f that in a later lesson, when we talk about
pro to types.

Initializing Values in Constructors

Let's go back to constructor functions now and look at ways you can initialize the properties o f the object
you're constructing with the function. We'll use a different example, so open a new file:

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> Initializing objects </title>
 <meta charset="utf-8">
 <script>
 function Point(x, y) {
 if (x == undefined || x == null) {
 this.x = 50;
 } else {
 this.x = x;
 }

 if (y == undefined || y == null) {
 this.y = 50;
 } else {
 this.y = y;
 }

 // Make a toString() method we can use to display the point
 this.toString = function() {
 return "[" + this.x + ", " + this.y + "]";
 }
 }

 // Can have code in constructors too
 var p = new Point();
 console.log("My point is: " + p.toString());
 </script>
</head>
<body>
</body>
</html>

 Save it in your /AdvJS fo lder as po int .ht ml, and . Open the conso le (and reload the page if
you need to); the Po int object, p, is displayed like this:

OBSERVE:

My point is: [50, 50]

In this code, we've got a Po int () constructor function to create Po int objects. Let's discuss the code:

OBSERVE:

function Point(x, y) {
 if (x == undefined || x == null) {
 this.x = 50;
 } else {
 this.x = x;
 }

 if (y == undefined || y == null) {
 this.y = 50;
 } else {
 this.y = y;
 }

 // toString(): display the point
 this.toString = function() {
 return "[" + this.x + ", " + this.y + "]";
 }
}

var p = new Point();
console.log("My point is: " + p.toString());

We use a co nst ruct o r f unct io n, Po int () to create a Po int object, p. So, if you look at the constructor
property o f the object p, you'll see the Po int () function.

Po int () actually expects two arguments, x and y, which are the coordinates o f the po int, but we call Po int ()
with no arguments. It turns out that JavaScript is to tally okay with this, but unless we do something further, the
x and y coordinates o f the po int we're trying to create will be undefined. So, we write code to test to see
whether the x and y values are passed in. If they are, we initialize t his.x and t his.y with the values x and y
respectively. If we don't pass in any values, we use the default value, 50 fo r both t his.x and t his.y.

Now, you might be tempted to take a shortcut and rewrite if (x == undef ined || x == null) { ... } as if (!x) {
... } (based on what you learned in the previous lesson about truthy and falsey values), but be careful! We
might want a po int at 0 , 0 , and 0 is falsey, so that shortcut won't work for us in this case. We can, however,
shorten the initialization a bit by making use o f the co ndit io nal o perat o r. Modify po int .ht ml as shown:

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> Initializing objects </title>
 <meta charset="utf-8">
 <script>
 function Point(x, y) {
 this.x = (!x && x != 0) ? 50 : x;
 this.y = (!y && y != 0) ? 50 : y;

 if (x == undefined || x == null) {
 this.x = 50;
 } else {
 this.x = x;
 }

 if (y == undefined || y == null) {
 this.y = 50;
 } else {
 this.y = y;
 }

 // Make a toString() method we can use to display the point
 this.toString = function() {
 return "[" + this.x + ", " + this.y + "]";
 }
 }

 // Can have code in constructors too
 var p = new Point();
 console.log("My point is: " + p.toString());
 </script>
</head>
<body>
</body>
</html>

 and . You see the same result as before.

Now, some programmers avo id the conditional operator (also written ?: fo r short) like the plague, because
it's harder to read, and you can always write the same code using an easier-to-read if/else statement. If you're
in this camp, feel free to use if/else statements instead. Still, you need to know how to read statements that
use the conditional operator too; they are used fairly o ften to initialize objects.

So, you read this:

OBSERVE:

this.x = (!x && x != 0) ? 50 : x;

like this: "If no t x AND x is not equal to 0 , T HEN set this.x to 50 ELSE set this.x to x."

In o ther words, you read ? as THEN and : as ELSE.

This statement checks to see if !x is true, which it will be if the parameter x is null, undefined, or 0 . Then, to
handle the 0 case, we check to make sure x != 0 . If x is 0 , this returns false, so the whole conditional is false,
and we set t his.x equal to x, which is 0 in this case. If x is undefined or null, we set t his.x to 50. If x is a non-
zero number we set t his.x to x.

Don't get the parameter x mixed up with the property t his.x. They are two different variables! Remember that
we're passing a value into the constructor to initialize the property t his.x. The value we pass in gets assigned
to the parameter x.

Each Po int object also has a method, t o St ring() , that creates a string representation o f the po int fo r display.
In t o St ring() we use t his.x and t his.y to create the string representing the Po int. Make sure to use the

object's properties, and not the parameters in the method. If you forget, and use x and y instead o f t his.x and
t his.y, what could happen? Well, if Po int () is called with no arguments, then the parameters x and y will be
undefined. While the Po int's x and y properties are set correctly to 50 each, you'll see [undef ined,
undef ined] when you call the t o St ring() method.

this

We've talked a bit about what happens to t his when you're constructing objects. To amek sure you've got a
handle on t his when you're working with constructor functions, regular functions, objects, and methods, let's
take a look at another example. Create this new file:

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> What happens to this </title>
 <meta charset="utf-8">
 <script>
 //
 // Rectangle constructor that makes rectangle objects
 //
 function Rectangle(width, height) {
 console.log("This in Rectangle is: ");
 console.log(this);

 this.width = width || 0;
 this.height = height || 0;
 this.getArea = function() {
 console.log("This in Rectangle's getArea is: ");
 console.log(this);
 return this.width * this.height;
 };
 }

 var rect1 = new Rectangle(5, 10);
 console.log("Area of rectangle 1: " + rect1.getArea());

 //
 // A function that makes rectangle objects
 //
 function makeRectangle(width, height) {
 console.log("This in makeRectangle is: ");
 console.log(this);

 return {
 width: width || 0,
 height: height || 0,
 getArea: function() {
 console.log("This in makeRectangle's getArea is: ");
 console.log(this);
 return this.width * this.height;
 }
 };
 }

 var rect2 = makeRectangle(5, 10);
 console.log("Area of rectangle 2: " + rect2.getArea());

 // getArea function
 function getArea(r) {
 console.log("This in getArea is: ");
 console.log(this);
 return (r.width * r.height);
 }
 console.log("Area from getArea(rect1): " + getArea(rect1));

 </script>
</head>
<body>
</body>
</html>

 Save this in your /AdvJS fo lder as rect angle.ht ml and . In the conso le, you see lo ts o f
output:

There's quite a bit go ing on here, so we'll step through it one piece at a time:

OBSERVE:

//
// Rectangle constructor that makes rectangle objects
//
function Rectangle(width, height) {
 console.log("This in Rectangle is: ");
 console.log(this);

 this.width = width || 0;
 this.height = height || 0;
 this.getArea = function() {
 console.log("This in a Rectangle's getArea is: ");
 console.log(this);
 return this.width * this.height;
 };
}
var rect1 = new Rectangle(5, 10);
console.log("Area of rectangle 1: " + rect1.getArea());

In this code, we've got a Rect angle() constructor function that we can use to make rectangles with widt h
and height properties, and a method, get Area() that returns the area o f the rectangle. We've added calls to
co nso le.lo g() in two different places within the constructor function to inspect the value o f t his.

When we call new Rect angle(5 , 10) to create a rectangle object, rect 1, the f irst t wo lines o f co de in t he
f unct io n display the value o f t his. The result is an empty Rect angle object:

OBSERVE:

This in Rectangle is:
Rectangle {}

When we call a construction function with new, the first thing that happens is a new, empty object is created.
This is the Rect angle { } object we see here in the conso le. Its constructor is Rect angle , and it doesn't
have any properties (yet).

The rest o f the constructor function assigns values to the widt h, height and get Area() properties, so that
when the object is returned at the end o f the function, all o f its properties have been created and given values.

Next, we call t he get Area() met ho d o f t he rect angle o bject we just creat ed. The f irst t wo lines o f
t he get Area() met ho d display the value o f t his in the conso le. We see that t his is a Rectangle object, and
that now it has the properties we created in the constructor:

OBSERVE:

This in Rectangle is:
Rectangle {}
This in Rectangle's getArea is:
Rectangle {width: 5, height: 10, getArea: function}
Area of rectangle 1: 50

Finally, we display the result o f the call to get Area() , which is 50.

So in both the body o f the constructor function and the method, t his refers to "this object," that is, the
Rectangle object created by the constructor. The first use o f t his is the object when it's created and modified
at object creation time (when we call the constructor function). The second use o f t his is the object when it's
accessed after we call the object's method, get Area() . In this case, the value o f t his is assigned
automatically because you are calling a method o f an object.

Now let's compare that to what happens when we call makeRect angle() to make a rectangle object.

OBSERVE:

//
// A function that makes rectangle objects
//
function makeRectangle(width, height) {
 console.log("This in makeRectangle is: ");
 console.log(this);

 return {
 width: width || 0,
 height: height || 0,
 getArea: function() {
 console.log("This in makeRectangle's getArea is: ");
 console.log(this);
 return this.width * this.height;
 }
 };
}

var rect2 = makeRectangle(5, 10);
console.log("Area of rectangle 2: " + rect2.getArea());

makeRect angle() isn't a constructor function, it's just a regular function, so we don't call it with new; we just
call it the regular way. The f irst t wo lines o f co de in makeRect angle() display the value o f t his. You can
see that t his is the global, Windo w object:

OBSERVE:

This in makeRectangle is:
Window {top: Window, window: Window, location: Location, external: Object, chrom
e: Object�}
This in a makeRectangle's getArea is:
Object {width: 5, height: 10, getArea: function}
Area of rectangle 2: 50

There is no object being created automatically by makeRect angle() . While we are creating an object in this
function, that object is not the value o f t his. We create that object in the next statement (by returning an object
literal).

However, when we call t he get Area() method o f the object returned by makeObject () , rect 2, you can see
that the value o f t his in the get Area() method is indeed an object:

OBSERVE:

This in makeRectangle is:
Window {top: Window, window: Window, location: Location, external: Object, chrom
e: Object�}
This in makeRectangle's getArea is:
Object {width: 5, height: 10, getArea: function}
Area of rectangle 2: 50

The object that we see is rect 2, "this object," that is, the object whose method we called. Again, notice that
the object's constructor is Object () (compare to the constructor fo r rect 1 above).

Finally, we display the area for rect 2, which is 50.

We've also included a function get Area() that takes a rectangle object and returns the area:

OBSERVE:

// getArea function
function getArea(r) {
 console.log("This in getArea is: ");
 console.log(this);
 return (r.width * r.height);
}
console.log("Area from getArea(rect1): " + getArea(rect1));

The value o f t his in the get Area() function displays as:

OBSERVE:

This in getArea is:
Window {top: Window, window: Window, location: Location, external: Object, chrom
e: Object�}
Area from getArea(rect1): 50

Once again, t his is the glo bal Windo w o bject . Just like makeRect angle() , get Area() is just a regular
o ld function that happens to take an object and compute something with it. There is no "this object" fo r this
function, so the value o f t his gets set to the Window object automatically.

Keeping track o f the value o f t his can be tricky in JavaScript, but it's important. You'll need to understand how
the value o f t his is set, and what it's set to in all situations. We'll also revisit t his in later lessons.

Constructing Array Objects

Before we leave this lesson, let's talk about constructing Array objects. Arrays are objects, although you
should think o f them as a special kind o f object with features that the objects we've been creating so far don't
have, like an index, and ordering imposed on the items in the object.

There are two ways to create an Array object. Type these commands in the conso le:

INTERACTIVE SESSION:

> var a1 = new Array();
undefined
> a1[0] = 1;
1
> a1[1] = 2;
2
> a1[2] = 3;
3
> a1
[1, 2, 3]

Here we created an empty array, a1, using the Array() constructor function, calling it with new like we would

any o ther constructor function. Then we add array items one at a time to the 0 , 1, and 2 indices in the array.
This is analogous to using new Object () and adding object properties one at a time, like we did with bo o k3
earlier in the lesson.

You can use bracket notation to access an object's properties, like this:

OBSERVE:

var theTitle = book1["title"];

the bracket notation is used to access the items in an array, except we use an index instead o f a property
name.

The second way to create an Array is to use the array literal notation:

INTERACTIVE SESSION:

> var a2 = [1, 2, 3];
undefined
> a2
[1, 2, 3]

This does exactly the same thing as the previous example; it creates a new array with values at the 0 , 1, and 2
indices, but it's a lo t shorter to write! In practice, you'll rarely use the Array() constructor to create an array.
Instead you'll use the more concise array literal notation. One exception is when you need to create an empty
array with a predefined number o f indices:

INTERACTIVE SESSION:

> var a3 = new Array(100);
undefined
> a3
[undefined x 100]

This creates an array with length 100, with all the items at every index set to undef ined, and the Chrome
conso le uses the shorthand "[undefined x 100]" to display the value o f this array. (Other browsers don't use
this shorthand, so you'll see different results in different browsers when you ask for the value o f a3).

Just like any o ther object, arrays can have named properties, and in fact, come with a named property,
lengt h, that you'll use to get the length o f your array:

INTERACTIVE SESSION:

> a1.length
3
> a2.length
3
> a3.length
100

Just like o ther objects, you can use the co nst ruct o r property to inspect the constructor function for the array:

INTERACTIVE SESSION:

> a1.constructor
function Array() { [native code] }
> a2.constructor
function Array() { [native code] }
> a3.constructor
function Array() { [native code] }

In each case, the constructor fo r the array is Array() . This is analogous to Object () being the constructor fo r
objects created with literal notation or with new Object () .

In this lesson, you learned about constructing objects, how constructor functions work, the difference between objects created
with a constructor function and those created using literal notation, and what happens to t his when you construct and use an
object.

In the next lesson, we'll explore more object-related goodies: pro to types and inheritance. Before you dive in though, do the
quizzes and pro jects, and then take a well-earned break.

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Prototypes and Inheritance
Lesson Objectives

When you complete this lesson, you will be able to :

use instanceof to check the constructor, o r "type," o f a specific object.
examine the pro to type property o f a constructor function.
add methods to an object's pro to type to share them among objects.
explore what happens to t his in an object's pro to type.
examine an object's pro to type chain.
use pro to typal inheritance to access properties from higher up the pro to type chain.
determine if a property is defined in an object or an object's pro to type with hasOwnProperty().
examine the pro to type o f an object in the conso le using __proto__.

JavaScript is an "object-oriented language" in two ways: first it's object-oriented in that just about everything in the language is
an object (except fo r a few primitives). Second, it's object-oriented in the sense that objects can inherit properties from other
objects and, thus, share code with them. However, if you have had any experience with a language like Java or C++ or C#, be
prepared to think differently in this lesson, because JavaScript objects inherit properties differently than those languages do.

Object-Oriented Programming in JavaScript
The key to understanding JavaScript objects work, and how they inherit properties, is to understand o bject
pro t o t ypes. Before we jump into pro to types though, let's review how objects are created with constructor functions,
and also introduce a new operator, inst anceo f .

instanceof

Let's begin our in-depth study o f objects by creating an example. We'll make this example a bit more
interesting and display a representation o f the objects in the web page (the po int is to understand how objects
work though, so don't get too caught up in the coo l web page part o f this example). Create a new HTML file as
shown, and then go through it, step by step:

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> Shapes with Prototypes and Inheritance </title>
 <meta charset="utf-8">
 <style>
 html, body, div#container {
 width: 100%;
 height: 100%;
 margin: 0px;
 padding: 0px;
 }
 div#container {
 position: relative;
 }
 .shape {
 position: absolute;
 text-align: center;
 }
 .shape span {
 position: relative;
 top: 44%;
 }
 .square {
 background-color: lightblue;
 }
 .circle {
 background-color: goldenrod;
 border-radius: 50%;
 }
 </style>
 <script>
function Circle(name, radius) {
 this.name = name;
 this.radius = radius;
 this.getCircumference = function() {
 return this.radius * Math.PI * 2;
 };
 this.getName = function() {
 return this.name;
 };
}

function Square(name, size) {
 this.name = name;
 this.size = size;
 this.getArea = function() {
 return this.size ^ 2;
 };
 this.getName = function() {
 return this.name;
 };
}
// Global variables so we can inspect them
// easily in the console! (Otherwise, we'd normally
// make them local to the window.onload function).
var circle1 = new Circle("circle1", 100);
var circle2 = new Circle("circle2", 200);
var square = new Square("my square", 150);

window.onload = function() {
 addShapeToPage(circle1);
 addShapeToPage(circle2);
 addShapeToPage(square);
};

function addShapeToPage(shape) {
 var container = document.getElementById("container");
 var div = document.createElement("div");
 var width = 0;
 var classes = "shape ";
 if (shape instanceof Circle) {
 classes += "circle";
 width = shape.radius;
 } else if (shape instanceof Square) {
 classes += "square";
 width = shape.size;
 }
 div.setAttribute("class", classes);
 div.style.left = Math.floor(Math.random() * (container.offsetWidth - 175)) +
 "px";
 div.style.top = Math.floor(Math.random() * (container.offsetHeight - 175)) +
 "px";
 div.style.width = width + "px";
 div.style.height = width + "px";

 var span = document.createElement("span");
 span.innerHTML = shape.getName();
 span.style.visibility = "hidden";
 div.appendChild(span);

 div.onmouseover = function() {
 // this is the div (the shape) you click on
 this.firstElementChild.style.visibility = "visible";
 };

 container.appendChild(div);
}
 </script>
</head>
<body>
<div id="container"></div>
</body>
</html>

 Save this in your /AdvJS fo lder as pro t o .ht ml, and . You see three shapes on the page:
two circles, and a square. Open the conso le, and verify that you can access the three global variables we
created for the three shapes:

INTERACTIVE SESSION:

> circle1
Circle {name: "circle1", radius: 100, getCircumference: function, getName: funct
ion}
> circle2
Circle {name: "circle2", radius: 200, getCircumference: function, getName: funct
ion}
> square
Square {name: "my square", size: 150, getArea: function, getName: function}

We have much to discuss in this code, including a new operator, inst anceo f . We'll go over it one chunk at a
time.

First, we have two constructor functions, Circle() and Square() :

OBSERVE:

function Circle(name, radius) {
 this.name = name;
 this.radius = radius;
 this.getCircumference = function() {
 return this.radius * Math.PI * 2;
 };
 this.getName = function() {
 return this.name;
 }
}

function Square(name, size) {
 this.name = name;
 this.size = size;
 this.getArea = function() {
 return this.size ^ 2;
 };
 this.getName = function() {
 return this.name;
 }
}

Circle() and Square() are similar to o ther constructor functions we've worked with in this course. The two
constructors are almost identical; bo th have a name property and a get Name() method. Circle() has a
radius property and a get Circumf erence() method, while Square() has a size property and a get Area()
method.

Next, we create three objects from the two constructors: two circles and a square:

OBSERVE:

var circle1 = new Circle("circle1", 100);
var circle2 = new Circle("circle2", 200);
var square = new Square("my square", 150);

We pass in initial values for the name property, and the radius and size properties for the circles and square,
respectively. We can inspect these global variables in the conso le.

When we display the three objects in the conso le, we use a constructor function to make each kind o f shape,
we know that the circles are made from the Circle() constructor and the square is made from the Square()
constructor:

OBSERVE:

> circle1
Circle {name: "circle1", radius: 100, getCircumference: function, getName: funct
ion}
> circle2
Circle {name: "circle2", radius: 200, getCircumference: function, getName: funct
ion}
> square
Square {name: "my square", size: 150, getArea: function, getName: function}

We have a short function assigned to the windo w.o nlo ad property that will run once the page is loaded into
the browser and the DOM is ready. This function calls the addShapeT o Page() function for each shape
we've created.

OBSERVE:

function addShapeToPage(shape) {
 var container = document.getElementById("container");
 var div = document.createElement("div");
 var width = 0;
 var classes = "shape ";
 if (shape instanceof Circle) {
 classes += "circle";
 width = shape.radius;
 } else if (shape instanceof Square) {
 classes += "square";
 width = shape.size;
 }
 div.setAttribute("class", classes);
 div.style.left = Math.floor(Math.random() * (container.offsetWidth - 175)) +
 "px";
 div.style.top = Math.floor(Math.random() * (container.offsetHeight - 175)) +
 "px";
 div.style.width = width + "px";
 div.style.height = width + "px";

 var span = document.createElement("span");
 span.innerHTML = shape.getName();
 span.style.visibility = "hidden";
 div.appendChild(span);

 div.onmouseover = function() {
 // this is the div (the shape) you click on
 this.firstElementChild.style.visibility = "visible";
 };

 container.appendChild(div);
}

The addShapeT o Page() function adds the shapes to the page. It has a shape parameter, which is either a
circle or a square, and creates a <div> element fo r that shape. Of course, we want our circles to look like
circles and our squares to look like squares, so we've created CSS classes to style the <div> elements for
each kind o f shape appropriately. Take a look back at the CSS and you'll see that we have a shape class for
both kinds o f shapes, a square class specifically fo r squares, and a circle class specifically fo r circles:

OBSERVE:

.shape {
 position: absolute;
 text-align: center;
}
.shape span {
 position: relative;
 top: 44%;
}
.square {
 background-color: lightblue;
}
.circle {
 background-color: goldenrod;
 border-radius: 50%;
}

In addShapeT o Page() , we need to know if the shape that was passed in is a circle or a square. Why?
Because if it's a circle, we want to add the circle class to the <div>, if it's a square, we want to add the square
class to the <div>. In addition, in order to set the width o f the <div> correctly, we'll need to access either the
radius property fo r circles or the size property fo r squares.

So how do we determine if the shape that got passed in is a square or a circle? We use the inst anceo f
operator:

OBSERVE:

 var width = 0;
 var classes = "shape ";
 if (shape instanceof Circle) {
 classes += "circle";
 width = shape.radius;
 } else if (shape instanceof Square) {
 classes += "square";
 width = shape.size;
 }

The inst anceo f operator is a binary operator: it takes two arguments. The operand on the left is the object
(you want to determine the type o f that object) and the operand on the right is the name of the constructor
function used to create the object. In this case, we use the inst anceo f operator to find out if the shape is a
Circle . If it is, we know that the shape was constructed using the Circle() constructor function, and it's a
circle object. Similarly, if it's Square , we know that shape is a square.

Once we know whether the shape is a circle or a square, we can set the classes and widt h variables, so the
shapes will display correctly in the web page.

Then we set up the rest o f the <div> to display a circle or square in the web page, and add the <div> to the
DOM so it displays in the page. We add a mo useo ver handler to the <div>. About that handler:

OBSERVE:

div.onmouseover = function() {
 // this is the div (the shape) you click on
 this.firstElementChild.style.visibility = "visible";
};

In the previous lesson we talked about t his and what t his is set to when you are constructing an object, o r
calling the method o f an object.

In most circumstances, when an event handler that is attached to a DOM object is called, t his is set to the
DOM object on which that event took place. So in this case, we attached a mouseover handler to the <div>
object that represents our shape. When you mouse over that <div>, and the handler function is called, t his is
set to the <div> object, not the shape object.

This can trip you up really easily, and yet another reason it's important to keep track o f what t his is.

Prototypes

So wht are pro to types anyway?

Whenever you create an object in JavaScript, you get a second object with it, its pro t o t ype . The pro to type is
associated with the constructor o f an object. Every function has a property, pro t o t ype , that ho lds a pro to type
object. Whenever you use that function as a constructor to create a new object, that new object gets the object
in that function's pro t o t ype property as its pro to type. So, the Circle() constructor function has a
pro t o t ype property that contains a Circle pro to type object. If you use Circle() to create a new object,
circle1, circle1's pro to type will be Circle .pro t o t ype (that is, the object in the pro t o t ype property o f the
Circle() constructor).

You can take a look at the pro to type o f a constructor function by using the pro t o t ype property o f the
function, like this:

INTERACTIVE SESSION:

> Circle
function Circle(name, radius) {
 this.name = name;
 this.radius = radius;
 this.getCircumference = function() {
 return this.radius * Math.PI * 2;
 };
 this.getName = function() {
 return this.name;
 }
}
> Circle.prototype
Circle {}
> Square
function Square(name, size) {
 this.name = name;
 this.size = size;
 this.getArea = function() {
 return this.size ^ 2;
 };
 this.getName = function() {
 return this.name;
 }
}
> Square.prototype
Square {}

When you type Circle at the conso le, you see its value is the constructor function, Circle() . When you type in
Circle.pro to type, you'll see its value is an object, Circle { } . The Circle .pro t o t ype object is an empty object;
there's nothing in it. However, any object you make using the Circle() constructor gets this Circle { } object
as its pro t o t ype .

You can find out the pro to type o f an object by getting the pro to type o f that object's constructor, like this:

INTERACTIVE SESSION:

> circle1.constructor.prototype
Circle { }

Try getting the pro to type o f the circle2 and square objects using the conso le. Do you get the result that you
expect?

It can get a little confusing at first to keep all this straight. But just think o f it like this: whenever you make an
object, that object gets a pro to type. A pro to type is just an object! And if you want to access an object's
pro to type, you use that object's constructor function's pro t o t ype property.

So, when you write new Circle("circle1", 100) you get back an object, circle1. The circle1 object's
pro to type is another object, Circle .pro t o t ype . Note that while we say circle1's pro to type is
Circle .pro t o t ype , that doesn't mean that circle1 has a property named pro t o t ype (it doesn't). The
relationship between circle1 and its pro to type is not the same as circle1 having a property. Now, you can
get to the pro to type o f circle1 through circle1's constructor function, Circle() , using the constructor
function's pro t o t ype property: Circle .pro t o t ype , but that's a different thing. Maybe this diagram will help
make the distinction more clear:

Now, because you are creating the object circle2 using the same constructor function, Circle() , circle2 has
the same pro to type as circle1:

INTERACTIVE SESSION:

> circle1.constructor.prototype
Circle { }
> circle2.constructor.prototype
Circle { }
> circle1.constructor.prototype === circle2.constructor.prototype
true

I should po int out that the pro to type property is a property o f the Circle() function. Yes, functions can have
properties! Why? Because functions are objects! They are special objects, but they are objects just the same.
We'll talk about this in more detail a little later.

Prototypes of Literal Objects

Let's see an example that uses the pro to type o f a literal object:

INTERACTIVE SESSION:

> var myObject = { x: 3 };
undefined
> myObject
Object {x: 3}
> myObject.constructor
function Object() { [native code] }
> myObject.constructor.prototype
Object { }
> myObject instanceof Object
true
> myObject instanceof Circle
false

The literal myObject object's constructor is Object () , and its pro to type is Object .pro t o t ype . We can
check to see if myObject is an Object using inst anceo f . For good measure, we check to see if myObject
is a Circle , and it's not. Good!

What is a Prototype Good For?

All this talk about pro to types, and you're probably still wondering, what good is a pro to type? Why whould I
care if an object has a pro to type?

This is where "object-oriented programming" comes in. A huge advantage o f a pro to type is that you can put
properties that will be shared across all objects and have that pro to type, in the pro to type object.

When you try to access a property o f an object, whether that property contains a primitive value or a method,
JavaScript first looks for that property in the object; if JavaScript doesn't find the property there, it looks in the
proto type. If it finds the property there, that's the value JavaScript uses. This is called the pro t o t ype chain.
Let's take a closer look at how this works.

circle1 and circle2 each have a different name, and a different radius, but the two methods,
get Circumf erence() and get Name() , are the same fo r both objects—they don't change.

However, when you create two separate objects from the same constructor, like we did:

OBSERVE:

var circle1 = new Circle("circle1", 100);
var circle2 = new Circle("circle2", 200);

each object gets its own copy o f the get Circumf erence() and get Name() methods:

In this example, it doesn't matter so much, but in an instance where each object has a large number o f
properties or methods, it can become problematic. Each object takes up memory. The more memory the
object takes up, the more memory your program uses and the slower it will be.

The Circle .pro t o t ype o f both circle1 and circle2 is currently an empty object:

INTERACTIVE SESSION:

> circle1.constructor.prototype
Circle { }

Similarly, the Square.pro t o t ype is currently an empty object.

We can move the two methods that both circles contain into the Circle .pro t o t ype object, and we can move
the methods that all squares get into the Square.pro t o t ype object. Modify pro t o .ht ml as shown:

CODE TO TYPE:

function Circle(name, radius) {
 this.name = name;
 this.radius = radius;
 this.getCircumference = function() {
 return this.radius * Math.PI * 2;
 };
 this.getName = function() {
 return this.name;
 };
}
Circle.prototype.getCircumference = function() {
 return this.radius * Math.PI * 2;
};
Circle.prototype.getName = function() {
 return this.name;
};

function Square(name, size) {
 this.name = name;
 this.size = size;
 this.getArea = function() {
 return this.size ^ 2;
 };
 this.getName = function() {
 return this.name;
 };
}
Square.prototype.getArea = function() {
 return this.size * this.size;
};
Square.prototype.getName = function() {
 return this.name;
};

// Global variables so we can inspect them
// easily in the console! (Otherwise, we'd normally
// make them local to the window.onload function).
var circle1 = new Circle("circle1", 100);
var circle2 = new Circle("circle2", 200);
var square = new Square("my square", 150);

window.onload = function() {
 addShapeToPage(circle1);
 addShapeToPage(circle2);
 addShapeToPage(square);
};

function addShapeToPage(shape) {
 var container = document.getElementById("container");
 var div = document.createElement("div");
 var width = 0;
 var classes = "shape ";
 if (shape instanceof Circle) {
 classes += "circle";
 width = shape.radius;
 } else if (shape instanceof Square) {
 classes += "square";
 width = shape.size;
 }
 div.setAttribute("class", classes);
 div.style.left = Math.floor(Math.random() * (container.offsetWidth - 175)) +
 "px";
 div.style.top = Math.floor(Math.random() * (container.offsetHeight - 175)) +
 "px";
 div.style.width = width + "px";
 div.style.height = width + "px";

 var span = document.createElement("span");
 span.innerHTML = shape.getName();
 span.style.visibility = "hidden";
 div.appendChild(span);

 div.onmouseover = function() {
 // this is the div (the shape) you click on
 this.firstElementChild.style.visibility = "visible";
 };

 container.appendChild(div);
}

 and . The program works as it did before; you see three shapes (two circles and a square) in
the page and when you mouse over the shapes, their names appear inside o f them.

Open up the conso le and type this:

INTERACTIVE SESSION:

> circle1.constructor.prototype
Circle { getCircumference: function, getName: function }

Now the prototype o f circle1 contains the two methods, get Circumf erence() and get Name() . Check
circle2 in the same way. Take a look at the Square.pro t o t ype object as well; it contains two methods now.
So what did we do?

First, we removed the get Circumf erence() and get Name() methods from the Circle() constructor (we
also removed the get Area() and get Name() methods from the Square() constructor). Then we added
these methods to the Circle .pro t o t ype object, by setting the same property names (the method names) to
the functions (we treat the Square pro to type similarly):

OBSERVE:

Circle.prototype.getCircumference = function() {
 return this.radius * Math.PI * 2;
};
Circle.prototype.getName = function() {
 return this.name;
};

Square.prototype.getArea = function() {
 return this.size * this.size;
};
Square.prototype.getName = function() {
 return this.name;
};

The Circle .pro t o t ype and Square.pro t o t ype objects, like any o ther object, can have methods. In the
same way that you can add new properties to an object at anytime, because objects are dynamic, we can add
new properties to the Circle .pro t o t ype and Square.pro t o t ype objects after those pro to type objects have
been created. So now, the get Circumf erance() and get Name() methods are stored only once—in the
Circle .pro t o t ype object:

The Prototype Chain

The get Circumf erance() and get Name() methods are now stored in the Circle .pro t o t ype object
instead o f in both the circle1 and circle2 objects. Let's see what happens when we try to call one o f these
methods:

INTERACTIVE SESSION:

> circle1.getName()
"circle1"
> circle1.getCircumference()
628.3185307179587

We called the get Name() method on the circle1 object , just like we did before, but circle1 no longer
contains that method. Instead, that method is now in circle1's pro to type object. So, how does it work?
JavaScript uses the pro t o t ype chain to look for a property. If a property is not found in an object, JavaScript
looks at that object's pro to type to see if it's there:

The get Name() method is in the pro to type, so that method is called.

Notice that the method in the pro to type object still uses t his. So how is t his being set to the correct object?
After all, the get Name() method is now in the pro to type object, but it still works for both circle objects.

When you call a method, like circle1.get Name() , the object that contains the method being called, in this
case circle1, is used as t his, even if that method is in the object's pro to type. So, when you call
circle1.get Name() , t his is set to circle1. When you call circle2.get Name() , t his is set to circle2.

Let's go back to the conso le and do a little more testing to help all this sink in (this next session is from the

Chrome conso le, so use Chrome if you want to duplicate it exactly):

INTERACTIVE SESSION:

> Circle
function Circle(name, radius) {
 this.name = name;
 this.radius = radius;
}
> Circle.prototype
Circle { getCircumference: function, getName: function }
> circle1
Circle { name: "circle1", radius: 100, getCircumference: function, getName: func
tion }
> circle1.constructor
function Circle(name, radius) {
 this.name = name;
 this.radius = radius;
}
> circle1.constructor.prototype
Circle { getCircumference: function, getName: function }
> circle2.constructor.prototype
Circle { getCircumference: function, getName: function }

First, we check the value o f Circle . It's just the constructor function Circle() . Then we check the value o f
Circle .pro t o t ype . Remember, functions are objects, so they can have properties, just like any o ther object.
We ask for the value o f the pro t o t ype property o f the Circle() constructor function; the value is a Circle
object containing two properties get Circumf erance() and get Name() , bo th o f which are methods.

Next, we check the value o f circle1. This is a Circle object, because it was constructed with the Circle()
constructor function, and contains four properties: name , radius, get Circumf erance() and get Name() .
But wait! We moved the two methods to the pro to type. Why are they listed here in the object? In this case, it's
because the Chrome conso le is showing the properties in the circle1's pro to type object, to demonstrate that
they are accessible as properties. (We'll see soon how to tell whether a property exists in an object or an
object's pro to type.)

Finally, we check the pro to type o f both the circle1 and circle2 objects by first getting the co nst ruct o r (using
the co nst ruct o r property o f the object, which is Circle()), and then getting the pro to type, using the
pro t o t ype property o f the constructor. We see that the pro to type o f both these objects is a Circle object.

Try this with the square object.

We are accessing the get Name() method o f the object that's in the variable shape when we create the
 that goes inside the <div> representing the shape:

OBSERVE:

var span = document.createElement("span");
span.innerHTML = shape.getName();
span.style.visibility = "hidden";
div.appendChild(span);

Just like we saw in the conso le session, when we access shape.get Name() , we're using the method that's
stored in the shape's pro to type. It doesn't matter if the shape is circle1, circle2, o r square ; we find the
get Name() in the pro to type (Circle .pro t o t ype o r Square.pro t o t ype , depending on which type o f object
is stored in the variable shape), and t his gets set to the object in the variable shape).

Since Circle .pro t o t ype and Square.pro t o t ype are objects, they also have pro to types. The pro to type o f
Circle .pro t o t ype is Object .pro t o t ype . Remember that Object () is a built- in constructor function that is
used to create objects, like when you write:

INTERACTIVE SESSION:

> var o = { x: 3 };
undefined
> o
Object { x: 3 }
> o.constructor
function Object() { [native code] }
> Object.prototype
Object { }

o is an object, and because it's a literal object, its constructor is Object () . The Object () constructor has a
pro t o t ype property, which contains o 's pro to type. Object .pro t o t ype looks like an empty Object, but it
only appears that way in the conso le. In reality, this object contains a bunch o f built- in methods for objects,
like t o St ring() . You can't see them because the implementation o f Object .pro t o t ype is internal to the
browser (that is, it's not JavaScript you wrote); it's just like the [native code] you see when you try to inspect
Object ()).

So let's see what happens when we type this:

INTERACTIVE SESSION:

> circle1.toString();
"[object Object]"

Remember the pro to type chain: when you write circle1.t o St ring() , JavaScript looks first in circle1, doesn't
find the t o St ring() method there, so then it looks in circle1's pro to type (Circle .pro t o t ype) . If it doesn't
find the method there, it looks in circle1's pro to type's pro to type (Object .pro t o t ype) and finds the method
there. We call this "looking up the pro to type chain" to find the method:

So what's the pro to type o f the object Object .pro t o t ype? It's the only object in JavaScript that doesn't have
a pro to type. Object .pro t o t ype is the top o f the pro to type chain, so the lookup ends there.

Prototypal Inheritance

Every object you create inherit s properties from the pro to types all the way up the pro to type chain. In our
example, circle1, inherits the methods get Name() and get Circumf erence() from its pro to type (because
we specifically added them to the pro to type), and circle1 inherits the method t o St ring() from the

Object .pro t o t ype .

We call this pro t o t ypal inherit ance , which means that if you try to access a property in an object, and that
property doesn't exist in the object itself, JavaScript looks up the pro to type chain to try to find that property.
Most objects either have one or two pro to types. An object will have the pro to type, Object .pro t o t ype , if it is
an object literal, o r if it has been created using new Object () . An object will have two pro to types if it is created
using a constructor function like Circle() , in which case the first pro to type up the chain is the
Circle .pro t o t ype and the second is one more step up the chain, Object .pro t o t ype . Some objects have a
longer chain, but that's fairly rare.

Let's come back to inst anceo f fo r a moment. Earlier we talked about inst anceo f as an operator to
determine which type o f object you have. We use it in the example for this lesson to figure out whether shape
is a circle or a square:

OBSERVE:

if (shape instanceof Circle) {
 classes += "circle";
 width = shape.radius;
} else if (shape instanceof Square) {
 classes += "square";
 width = shape.size;
}

inst anceo f checks the pro to type chain o f shape to see if there is a Circle .pro t o t ype object or a
Square.pro t o t ype object. In our example, the shape was constructed by either the Circle() o r Square()
constructor functions, so our shape will a have Circle .pro t o t ype pro to type, or a Square.pro t o t ype
proto type, and so we'll find one o f these pro to types in the chain.

Remember, Object .pro t o t ype is also in the pro to type chain, so we could write this:

INTERACTIVE SESSION:

> circle1 instanceof Circle
true
> circle1 instanceof Object
true
> square instanceof Square
true
> square instanceof Object
true

circle1 is an instance o f both a Circle and an Object! The same is true with square ; square is an instance o f
both a Square and an Object. That makes sense, because all objects are instances o f Object, after all.
However, the extra object in the pro to type chain gives you more information about the kind o f object you're
dealing with. In this case, it tels you whether the object is a circle or a square.

If you have experience using an object-oriented language like Java or C++ or C#, prototypal inheritance
probably seems quite strange to you. It certainly is different from classical inheritance, where you create
objects from classes, and create an inheritance hierarchy by extending o ther objects. For more on pro to typal
inheritance and classical inheritance, and a comparison o f the two, see the Wikipedia page on Proto type-
based programming.

When are Prototype Objects Created?

You can add properties to pro to type objects, like Circle .pro t o t ype , after these objects are created, but
when are pro to type objects created? A pro to type object is created whenever you define a function. In o ther
words, every function has a pro to type property that contains a pro to type object. If you then use that function to
create a new object using new, that new object gets that function's pro to type.

So we can add properties to the Circle .pro t o t ype and Square.pro t o t ype objects as soon as the
Circle() and Square() functions have been defined, even before we use them to create any objects. Look
back at the code and you'll see that we add properties to both pro to types, before we ever define circle1,
circle2, o r square .

Try this in the conso le (make sure you've loaded the pro t o .ht ml document first):

http://en.wikipedia.org/wiki/Prototype-based_programming

INTERACTIVE SESSION:

> Circle.prototype.x = 400;
400
> Circle.prototype.y = 200;
200
> circle1.x
400
> circle1.y
200
> circle2.x
400
> circle2.y
200

We added two properties to the Circle .pro t o t ype object after we created the circle1 and circle2 objects,
and yet you can see that those properties have values when we query circle1 and circle2. It may seem odd
that properties can appear in objects after they're created, without modifying those objects specifically (by
adding a property directly, like circle1.x = 400;). If you look back at the diagram that shows how pro to types
work though, you'll see that if you try to access a property in an object and that property doesn't exist in the
object itself, we go up the pro to type chain to find it. Even if we add a property to the pro to type o f an object after
that object is created, that property will be accessible from the object.

hasOwnProperty

An object can inherit properties from its pro to type chain, but how can you find out if a property is in the object
itself, o r in one o f the object's pro to types? You use the hasOwnPro pert y() method. Make sure your
pro t o .ht ml document is loaded and try this in the conso le:

INTERACTIVE SESSION:

> circle1.hasOwnProperty("name")
true
> circle1.hasOwnProperty("getName")
false
> circle1.hasOwnProperty("radius")
true
> Circle.prototype.x = 400;
400
> circle1.hasOwnProperty("x")
false

The property name you pass to hasOwnPro pert y() must be a string (put the property name in quotation
marks). The result o f calling circle1.hasOwnPro pert y("name") is true because the property name , is
defined in the circle1 object. However, the get Name property (a method) is not defined in the circle1 object,
it's defined in circle1's pro to type, Circle .pro t o t ype , so the result o f calling hasOwnPro pert y() on this
property is false. Similarly, the property radius is defined in circle1, but the property x is not; it's defined in the
Circle .pro t o t ype .

Try this:

INTERACTIVE SESSION:

> circle1.hasOwnProperty("hasOwnProperty");
false
> Object.prototype.hasOwnProperty("hasOwnProperty");
true

We called the hasOwnPro pert y() method on the circle1 object, but hasOwnPro pert y() isn't defined in
either circle1 o r Circle .pro t o t ype , so it must be defined in Object .pro t o t ype . Since all objects inherit

this method, you can call hasOwnPro pert y() on any object, including the Object .pro t o t ype object, which
contains this method. That's kind o f weird, but you can see why the result o f calling
Object.pro to type.hasOwnProperty("hasOwnProperty"); is true.

__proto__

You've seen the __pro t o __ property used in a previous lesson when we inspected an object. You can see it
if you look at circle1 in the Chrome conso le and expand the object by clicking on the little arrow next to it:

This property refers to the pro to type o f an object. In this case, our object is circle1, and its pro to type is
Circle .pro t o t ype , displayed as Circle in the __pro t o __ property. In fact, in the Chrome conso le, you can
ask for the value o f that property, like this:

The pro to type o f circle1 is a Circle object that contains the two methods we added, get Name() and
get Circumf erence() , along with the properties x and y that we added to the pro to type later (you might not
see x and y if you've reloaded the page). Circle .pro t o t ype has a __pro t o __ property,
Object .pro t o t ype , so the __pro t o __ property o f objects allows you to see the pro to type chain.

However, do no t re ly o n t his pro pert y. It's kind o f a secret property that browsers implement, but it's not
o fficially part o f the JavaScript standard and could disappear or change at any time. Use it to inspect objects in
the conso le, but not in your programs!

Setting the Prototype Property to an Object Yourself

So far, we've used the default pro to type you get when you create a constructor function, and then added our
own properties and methods to that pro to type object fo r inheritance, but you can actually set the pro to type o f
a constructor yourself to an object you've created. Let's see how:

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> Shapes with Prototypes and Inheritance: Setting the prototype yourself
 </title>
 <meta charset="utf-8">
 <script>
 var shape = {
 x: 0,
 y: 0,
 area: 0,
 setPosition: function(x, y) {
 this.x = x;
 this.y = y;
 },
 displayInfo: function() {
 console.log("Your shape has area " + Math.ceil(this.area) + ", and i
s located at " + this.x + ", " + this.y);
 }
 };

 function Circle(radius) {
 this.radius = radius;
 this.computeArea = function() {
 this.area = Math.PI * (this.radius * this.radius);
 };
 }

 function Square(size) {
 this.size = size;
 this.computeArea = function() {
 this.area = this.size * this.size;
 };
 }

 Circle.prototype = shape;
 Square.prototype = shape;

 var circle = new Circle(50);
 circle.setPosition(100, 100);
 circle.computeArea();
 circle.displayInfo();

 var square = new Square(50);
 square.setPosition(300, 300);
 square.computeArea();
 square.displayInfo();
 </script>
</head>
<body>
</body>
</html>

 Save this in your /AdvJS fo lder as set Pro t o .ht ml, and . Open the conso le, and you see
this:

INTERACTIVE SESSION:

Your shape has area 7854, and is located at 100, 100
Your shape has area 2500, and is located at 300, 300

We defined a literal object, shape , using some properties and methods. We made this a literal object, not a

constructor because we don't want users to create new shape objects; we want them to create circles and
squares.

Then we define two simple constructors, one for Circle objects, and one for Square objects:

OBSERVE:

 Circle.prototype = shape;
 Square.prototype = shape;

We set t he pro t o t ype pro pert y o f the Circle constructor object to the shape object, and we do t he
same f o r t he Square co nst ruct o r o bject . So now, the pro to type object fo r circle is a shape object
rather than a Circle . As such, circle inherits the methods and properties o f the shape object, so we can call
circle .set Po sit io n() and circle .displayInf o () . square works the same way as well.

In this example, we use the same object as the pro to type for both circles and squares: shape . That means the
properties and methods in the pro to type object need to make sense for both circles and squares. Before, we
set properties o f the pro to type by writing Circle .pro t o t ype.PROPERT Y = PROPERT Y VALUE and
Square.pro t o t ype.PROPERT Y = PROPERT Y VALUE because we needed different properties and
methods for circles and squares. Keep this in mind as you are setting up your object pro to types; how you
choose to set up the pro to type chain depends on your individual situation and whether you need different
pro to types or the same pro to type for your objects.

Take a look at the circle and square objects:

INTERACTIVE SESSION:

> circle
Circle {radius: 50, computeArea: function, x: 100, y: 100, area: 7853.9816339744
83�}
> square
Square {size: 50, computeArea: function, x: 300, y: 300, area: 2500}
> circle.constructor.prototype
Object {}
> square.constructor.prototype
Object {}

> circle instanceof Circle
true
> circle instanceof shape
TypeError: Expecting a function in instanceof check, but got #<Circle>

We see that the constructor fo r circle is Circle , and for square , it's Square , but now, the
circle .co nst ruct o r.pro t o t ype is shown as Object {} (it was Circle {} before). That's because the
proto type is the square object, and since the square object is a literal object, its constructor is Object () , so
its "type" is Object . square works the same way.

In o ther words, circle is an instance o f Circle (because we made circle using the Circle() constructor), and
circle is an instance o f Object because shape is a literal object, and its constructor is Object () .

Pro toypal inheritance and object pro to types are not extremely complicated, yet this topic can be difficult to wrap your head
around, especially if you have experience with class-based languages. You have to put all that knowledge aside and think
differently about objects and inheritance. It all bo ils down to this: in Javascript, every object has a pro to type (except, o f course,
Object .pro t o t ype), and can inherit properties from the pro to type chain.

Make sure you give yourself plenty o f time to practice and understand the concepts in this lesson. Experiment with your own
objects and pro to types. Use the conso le to inspect your objects, and the too ls you have in your pocket now to test to make
sure that what you think should happen does. Practice and make sure you know what you're do ing in the quizzes and pro jects.

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Functions
Lesson Objectives

When you complete this lesson, you will be able to :

use basic functions.
use functions to organize code.
define functions using function declarations and function expressions.
compare the differences in using function declarations and function expressions.
express functions as first class values.
express functions as anonymous functions.
pass functions as values to o ther functions.
return a function from a function.
use a function as an event handler.
recognize how values are passed to functions using pass-by-value.
explain what happens when we pass objects to functions.

We've spent the last couple o f lessons working with objects; now let's turn our attention to functions.

JavaScript Functions
We've used functions throughout the course, in a variety o f different ways. It would be difficult to do any kind o f serious
JavaScript without using a function.

What is a Function?

A function is a block o f code that's defined once, but can be executed many times. Let's look at a simple
function declaration:

OBSERVE:

function computeArea(radius) {
 var area = radius * radius * Math.PI;
 return area;
}

There are a lo t o f different parts to this function, so let's go through it, steb by step. First, we have the
f unct io n keyword. Then, we have the name o f t he f unct io n, co mput eArea. Then in parentheses, we
have a paramet er (radius) . The body o f the function (the statements that are executed when you call the
function) are defined within curly brackets. In the body o f this function, we have two statements: first a
statement that declares and computes a value for a lo cal variable , area, second a ret urn st at ement , that
returns the value o f area to the statement that called the function.

Let's call the function now:

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> Functions </title>
 <meta charset="utf-8">
 <script>
 function computeArea(radius) {
 var area = radius * radius * Math.PI;
 return area;
 }

 var circleArea = computeArea(3);
 console.log("Area of circle with radius 3: " + circleArea);
 </script>
</head>
<body>
</body>
</html>

 Save this in your /AdvJS fo lder as f unct io ns.ht ml, and . In the conso le, you see the area
of the circle with the radius 3:

OBSERVE:

Area of circle with radius 3: 28.274333882308138
>

Let's take a closer look:

OBSERVE:

 function computeArea(radius) {
 var area = radius * radius * Math.PI;
 return area;
 }

 var circleArea = computeArea(3);

We call the function using its name (co mput eArea) , passing an argument (3) to the function. The
function's parameter, radius gets the value o f the argument. That value is used in the computation. When we
pass an argument into a function, we say that the argument is bo und to the parameter. So here, the value 3 is
bound to the parameter radius.

The value returned from the function is stored in the variable circleArea.

We can call the function as many times as we want:

CODE TO TYPE:

function computeArea(radius) {
 var area = radius * radius * Math.PI;
 return area;
}

var circleArea = computeArea(3);
console.log("Area of circle with radius 3: " + circleArea);
circleArea = computeArea(5);
console.log("Area of circle with radius 5: " + circleArea);
circleArea = computeArea(7);
console.log("Area of circle with radius 7: " + circleArea);

 and . In the conso le, you now see the areas o f the circles with radii o f 5 and 7, along with the

area o f the circle with radius 3.

By creating the function co mput eArea() , we packaged up a little bit o f code that computes the area o f a
circle; that can then be reused each time we call the function. In addition, we can customize the code a bit each
time we call the function by passing different values for the argument. We can also get customized values
back from a function if we return a value. In this case, we get the area o f the circle that provided the radius we
passed into the function. Note that functions always return a value; if you don't explicitly return one, a function
returns undef ined (unless you use it as a constructor, in which case the function returns an object).

So, functions are a way o f reusing code. They're also a way o f organizing your code. A good programming
practice is to think o f functions as a way to put related code together. For instance, you might put all code
related to computing the area o f a circle together in one function, while you put all code related to computing
the distance between two po ints together in another function.

When you create a function, you're also creating a sco pe fo r executable statements. We'll look at scope in a
lo t more detail in the next lesson, but fo r now, notice that the parameter radius and the variable area are both
lo cal (that is, visible only in the body o f the function), rather than glo bal (that is, visible everywhere in your
code). Programmers are o ften crtical o f JavaScript's dependence on global variables, because global
variables are easy to lose and misuse. Functions are good for keeping variables out o f the global scope.
This is especially useful when you combine your own code with code from libraries, like jQuery or
Underscore.js. Using functions to keep variables out o f the global scope is o ften called the Mo dule Pat t ern.
We'll cover that in detail in a later lesson.

Different Ways of Defining a Function

In the code above, we used what's called a f unct io n declarat io n to define the co mput eArea() function.
That is, we declared the function using a statement that begins with the f unct io n keyword. It looks like this:

OBSERVE:

function functionName(parameters) {
 // body goes here
}

One of the advantages to defining functions using function declarations is that you can place your functions
above or below the code that uses them. Try it:

CODE TO TYPE:

function computeArea(radius) {
 var area = radius * radius * Math.PI;
 return area;
}

var circleArea = computeArea(3);
console.log("Area of circle with radius 3: " + circleArea);
circleArea = computeArea(5);
console.log("Area of circle with radius 5: " + circleArea);
circleArea = computeArea(7);
console.log("Area of circle with radius 7: " + circleArea);

function computeArea(radius) {
 var area = radius * radius * Math.PI;
 return area;
}

 and ; your code works exactly the same way as it did before, even though the function
co mput eArea() is defined below where we are using it.

This works because when the browser loads your page, it goes through all your JavaScript and looks for
function declarations before it begins executing your code. When you define a function at the global level like
we did here, JavaScript adds the function as a property o f the global window object, so that the function
definition is visible everywhere in your code. Then, the browser goes back to the top o f your JavaScript, and
begins executing the code, top down. So, when the JavaScript interpreter gets to the first line where you call
co mput eArea() , that function is defined, so the function call succeeds.

Another way you can create a function is to use a function expression:

CODE TO TYPE:

var circleArea = computeArea(3);
console.log("Area of circle with radius 3: " + circleArea);
circleArea = computeArea(5);
console.log("Area of circle with radius 5: " + circleArea);
circleArea = computeArea(7);
console.log("Area of circle with radius 7: " + circleArea);

function computeArea(radius) {
 var area = radius * radius * Math.PI;
 return area;
}
var computeArea = function(radius) {
 var area = radius * radius * Math.PI;
 return area;
};

We've replaced the function declaration with a variable declaration: we declare the variable co mput eArea
and initialize that variable to the result o f a f unct io n expressio n, that is, a function value. Because
co mput eArea is a global variable, the end result is almost the same: a property named co mput eArea is

added to the global window object set to the value o f the function. However, when you and
preview, you see an error instead o f the expected log messages. Why?

JavaScript sees this statement as just a variable declaration and initialization. The value o f the variable
happens to be a function, but because we are not using a function declaration, the function is no longer
defined in that first pass through the code; instead, the function is not defined until JavaScript gets to the
variable declaration, which is when it executes the code from the top down. Now that the function is defined
after the statements that try to call the function, we get an error message.

We can fix the error by moving the variable declaration to the top o f the code, like this:

CODE TO TYPE:

var computeArea = function(radius) {
 var area = radius * radius * Math.PI;
 return area;
};
var circleArea = computeArea(3);
console.log("Area of circle with radius 3: " + circleArea);
circleArea = computeArea(5);
console.log("Area of circle with radius 5: " + circleArea);
circleArea = computeArea(7);
console.log("Area of circle with radius 7: " + circleArea);

var computeArea = function(radius) {
 var area = radius * radius * Math.PI;
 return area;
};

 and ; your code works again.

We also use function expressions when we define methods in objects:

OBSERVE:

circle = {
 radius: 3,
 computeArea: function() {
 var area = this.radius * this.radius * Math.PI;
 return area;
 }
};

You can see we're using the same syntax to define the method (co mput eArea() in the circle object) as we
did when we defined it as a global function. The difference is that now the property is visible only in the circle
object; the function is no longer a property o f the global windo w object.

So, when defining global functions, which is better: using a function declaration, or declaring a variable and
initializing it to a function expression?

The main advantage to using function declarations when defining global functions is that you know the
functions will be visible throughout your code so you don't necessarily need to put them all at the top.
However, as long as you don't need all o f your functions to be defined at the time your code begins executing,
using a variable declaration and setting the value o f the variable to a function expression works just as well.
Some programmers prefer that method o f creating functions.

We often create and use functions that don't need to be defined in the global window object. Reducing the
number o f global variables (including functions!) is always preferable in JavaScript. So next, we'll take a look
at o ther situations where we can use function expressions rather than function declarations.

Functions as First Class Values

We tend to think o f functions as different from other kinds o f values, like 3, or even an object, like circle , but in
JavaScript, a function is just another kind o f value, a value that you can assign to a variable or an object
property, and even pass to or return from a function.

We say that functions are f irst class values in JavaScript. A first class value is one that can be stored in a
variable, passed to a function, and returned from a function. You can already see that values like numbers,
strings, and boo leans are first class; so are objects. If you've been working with JavaScript fo r a while, you
probably know that functions are first class. Not all languages have first class functions. In some languages,
functions are treated separately and differently than o ther values.

So what's the deal with f irst class f unct io ns? We'll take a look at the map() method to answer that
question. Create a new file and add this code:

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> First Class Functions </title>
 <meta charset="utf-8">
 <script>
 var myArray = [1, 2, 3];
 var newArray = myArray.map(function(x) { return x+1; });
 console.log(newArray);
 </script>
</head>
<body>
</body>
</html>

 Save this in your /AdvJS fo lder as f unct io ns2.ht ml, and . Open the conso le. You see an
array in the conso le:

OBSERVE:

[2, 3, 4]

Note
If you get an error when you try this code, it's because your browser doesn't yet support map() .
This is a fairly new method that was added to JavaScript as part o f the EMCAScript 5 standard.
Make sure you have the most recent version o f your browser to try this code, as map() has
broad support in all the recent versions o f browsers.

The map() method is an array method that all arrays inherit from the Array pro to type. It takes a function and
applies that function to each element o f the array (in order). So in our example, map() first applies the function
to myArray[0] , then myArray[1] , and so on. The array element is passed as the argument fo r the parameter
x. map() returns a new array, the same length as the original array, with elements that are the values returned
by each invocation o f the function we passed to map() . In our example, the function we pass to map() adds
one to each o f the array elements, so the array you get back has items that are one greater than each o f the
corresponding items in the original array.

The value that we passed to map() is a function. Unfortuantely, since map() applies the function to the
elements o f the array for you (behind the scenes), you don't get to see how a function that is passed as an
argument works. Let's implement our own version o f map() , that way, you can see not only how to pass a
function as an argument, but also how to use it in the function to which you pass it:

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> First Class Functions </title>
 <meta charset="utf-8">
 <script>
 var myArray = [1, 2, 3];
 var newArray = myArray.map(function(x) { return x+1; });
 console.log(newArray);

 function map(a, f) {
 var newArray = [];
 for (var i = 0; i < a.length; i++) {
 newArray.push(f(a[i]));
 }
 return newArray;
 }

 function addOne(x) {
 return x+1;
 }

 var newArray2 = map(myArray, addOne);
 console.log(newArray2);
 </script>
</head>
<body>
</body>
</html>

 and preview. In the conso le, you get the exact same result fo r our own version o f map() as
we did before, the array [2, 3, 4]. Let's go over the code, step by step:

OBSERVE:

function map(a, f) {
 var newArray = [];
 for (var i = 0; i < a.length; i++) {
 newArray.push(f(a[i]));
 }
 return newArray;
}

function addOne(x) {
 return x+1;
}

var newArray2 = map(myArray, addOne);

Our version o f map() is a function, not a method, so we need to pass both the array and the f unct io n that
will act on the array, to the map() function. That's why our function has two parameters instead o f one.

First, we create a new empty array, newArray. Then we loop over all the elements in the array we passed in,
a, and apply the function f to the array element. Inside map() , we find f . f produces a new value that we then
add to the newArray at the same index as a[i] . When we finish, we return the newArray.

Now let's see how to call this map() function. We need an array and a f unct io n to pass to it; we'll reuse
myArray (from the top o f the code), and create a function named addOne() to pass. Just like before,
addOne() is a function that takes one argument, adds one to it, and returns that new value. We call map() ,
passing in myArray and addOne as arguments for a and f , then get back a new array with each element one
greater than myArray.

Passing a function to a function is much like passing any o ther value to a function, except you have to use it
as a function, and you need to know what kind o f arguments the function expects and what kind o f value it
returns (if any). You can write methods and functions like map() , that do some useful work, and can also be
customized by passing in different functions.

Anonymous Functions

When we called the map() method on the array, we used a function expression as the argument that we
passed to map() , whereas in our own implemention o f map() , we use a declared function as the argument. It
doesn't really matter which you use, but if you're not go ing to use the function addOne() anywhere o ther than
as an argument to map() , you might want to avo id excess clutter and use a function expression instead:

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> First Class Functions </title>
 <meta charset="utf-8">
 <script>
 var myArray = [1, 2, 3];
 var newArray = myArray.map(function(x) { return x+1; });
 console.log(newArray);

 function map(a, f) {
 var newArray = [];
 for (var i = 0; i < a.length; i++) {
 newArray.push(f(a[i]));
 }
 return newArray;
 }

 function addOne(x) {
 return x+1;
 }

 var newArray2 = map(myArray, addOne);
 var newArray2 = map(myArray, function(x) { return x+1; });
 console.log(newArray2);
 </script>
</head>
<body>
</body>
</html>

 and . You see the same result in the conso le.

Now, instead o f declaring the function addOne() , we pass a function expression to map() . Unlike when we
passed addOne() , this function doesn't have a name. It's known as an ano nymo us f unct io n. Of course, it
has a name inside map() , because it gets bound to the name of the parameter, f .

Anonymous function expressions are just function values where the function has no name. This is useful
when we're passing functions to functions, or returning functions from functions, because in both cases the
function gets bound to a name so you can refer to it. When you pass an anonymous function to a function, it
gets bound to the name of the parameter variable; when you return an anonymous function from a function, it
gets stored in the variable you're using to ho ld the return value. You'll see anonymous functions used
frequently in JavaScript as a shortcut to declare and name a function separately.

Returning a Function from a Function

Not only can you pass a function to a function, you can return a function from a function. Let's look at an
example:

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> Returning Functions </title>
 <meta charset="utf-8">
 <script>
 function makeConverterFunction(multiplier, term) {
 return function(input) {
 var convertedValue = input * multiplier;
 convertedValue = convertedValue.toFixed(2);
 return convertedValue + " " + term;
 };
 }

 var kilometersToMiles = makeConverterFunction(0.6214, "miles");
 console.log("10 km is " + kilometersToMiles(10));

 var milesToKilometers = makeConverterFunction(1.62, "km");
 console.log("10 miles is " + milesToKilometers(10));
 </script>
</head>
<body>
</body>
</html>

 Save this in your /AdvJS fo lder as f unct io ns3.ht ml, and . In the conso le, you see this
output:

OBSERVE:

10 km is 6.21 miles
10 miles is 16.20 km

Let's go over the code:

OBSERVE:

function makeConverterFunction(multiplier, term) {
 return function(input) {
 var convertedValue = input * multiplier;
 convertedValue = convertedValue.toFixed(2);
 return convertedValue + " " + term;
 };
}
var kilometersToMiles = makeConverterFunction(0.6214, "miles");
console.log("10 km is " + kilometersToMiles(10));

var milesToKilometers = makeConverterFunction(1.62, "km");
console.log("10 miles is " + milesToKilometers(10));

We're using one function, makeCo nvert erFunct io n() , to create two o ther functions, kilo met ersT o Miles
and milesT o Kilo met ers. makeCo nvert erFunct io n() takes two arguments: a multiplier value to do a
conversion (it doesn't matter what kind o f conversion, as long as it can be done by multiplying one value by
another), and a string representing the term of measurement we expect back from the function we generate.

makeCo nvert erFunct io n() returns a function. The function it returns takes one argument, input , and uses
that argument in a computation with the parameters o f makeCo nvert erFunct io n() .
makeCo nvert erFunct io n() knows nothing about the kind o f conversion we want to do. It knows knows
that it's generating a new function that multiplies input by mult iplier, uses t o Fixed() to make sure the
resulting number has a fractional part o f at most two numbers, and then returns a string made by combining
the number with the t erm passed into makeCo nvert erFunct io n() .

We can use makeCo nvert erFunct io n() to make functions that do a specific kind o f conversion, passing in

a value for multiplier and a string for term. So to create a f unct io n t hat co nvert s kilo met ers t o miles
(kilo met ersT o Miles) , we pass in a multiplier o f 0 .6214, and "miles," and get back a function that can do
this conversion when we call it and pass in the number o f kilometers. Similarly, we can create a f unct io n t o
co nvert miles t o kilo met ers (milesT o Kilo met ers) by passing in 1.62 for the multiplier, and "km" for
the term.

Review this code carefully to make sure you understand it. The makeCo nvert erFunct io n() returns a
function that uses both the parameters o f makeCo nvert erFunct io n() , as well as the (yet to be bound)
parameter, input . Once makeCo nvert erFunct io n() creates its function and returns it, the parameters
mult iplier and t erm go away, yet somehow, the functions kilo met ersT o Miles() and
milesT o Kilo met ers() "remember" those values. The secret to this somewhat magical ability to remember
is the clo sure—we'll come back to that in a later lesson.

For now, just be aware that the arguments you pass into makeCo nvert erFunct io n() are used (and
remembered) by the function that makeCo nvert erFunct io n() creates. So in kilo met ersT o Miles() , the
value o f mult iplier is 0 .6214 and the value o f t erm is "miles," while in milesT o Kilo met ers() , the value o f
mult iplier is 1.62, and the value o f t erm is "km."

Functions as Callbacks

At the heart o f just about every JavaScript program are event s. When you write a web application, you use
JavaScript to add interactivity to your page, which means your program needs to respond to events generated
by the browser, and events generated by the user.

In JavaScript, we use functions to handle events. We often refer to event handlers as callbacks because
when an event happens, we "call back" to a function to handle that event. Callbacks aren't always about
browser and user events, but o ften they are.

You've probably used functions to handle events like the page load and button click events. If you've used
Ajax (also known as XHR) or Geolocation in your JavaScript programs, you're probably familiar with
functions used as callbacks. For instance, with Ajax, you provide a function to "call back" when
XMLHttpRequest has loaded data from a file. With Geolocation, you provide a function to "call back" when the
browser has located your position. Let's take a quick look at a basic Geolocation example so you can see
how we use a function as a callback:

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> Functions as callbacks </title>
 <meta charset="utf-8">
 <script>
 window.onload = function() {
 if (navigator.geolocation) {
 navigator.geolocation.getCurrentPosition(getLocation);
 }
 else {
 console.log("Sorry, no Geolocation support!");
 return;
 }
 };

 function getLocation(position) {
 var latitude = position.coords.latitude;
 var longitude = position.coords.longitude;
 var div = document.getElementById("container");
 div.innerHTML = "You are at lat: " + latitude + ", long: " + longitude;
 }
 </script>
</head>
<body>
<div id="container"></div>
</body>
</html>

 Save this in your /AdvJS fo lder as f unct io ns4.ht ml, and . Your location will be displayed

in the browser in a moment.

Note All modern browsers support Geolocation, but there are many reasons Geolocation can fail. If
you're not getting a location, don't worry, just fo llow along.

We use functions as callbacks in two places in this example: first, we use an anonymous function as the load
event handler, by setting the windo w.o nlo ad property to the function. That means when the browser triggers
the "load" event—that is, when the page is fully loaded—the function that's been stored in the
windo w.o nlo ad property is called. This happens asynchronously. You can't anticipate when the page is
loaded; all you know is that when the browser has loaded the page, it will call this function.

Second, we use the get Lo cat io n() function as a callback for the Geolocation get Current Po sit io n()
method. Again, this is an event handler: a function that is called when a specific event happens—in this case,
when the Geolocation object has found your position. This callback happens asynchronously: you can't
anticipate how long it's go ing to take your browser to find your location, you just know that when it does, the
browser will call your function back with your position.

Unlike with windo w.o nlo ad, we specify this callback by passing the get Lo cat io n() function to the
get Current Po sit io n() method. The get Current Po sit io n() method calls get Lo cat io n() (behind the
scenes) as soon as the browser has retrieved your location. In get Lo cat io n() we have a valid position, so
we add the position, as a latitude and longitude, to the web page. (If you get an error retrieving your position,
then get Lo cat io n() won't be called; it's only called if the browser can find you).

Calling Functions: Pass-by-Value

In this lesson we've seen quite a few examples o f functions, and we've passed a variety o f different values to
functions, including numbers, strings, and o ther functions. Let's take a closer look at what happens when we
pass arguments to functions. Create a new file and add this code:

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> Functions: Pass by value </title>
 <meta charset="utf-8">
 <script>
 function changeNum(num) {
 num = 3;
 }
 var myNum = 10;
 changeNum(myNum);
 console.log(myNum);
 </script>
</head>
<body>
</body>
</html>

 Save this in your /AdvJS fo lder as f unct io ns5.ht ml, and . Open the conso le.

You see the value 10. Is that what you expected? When you pass myNum to the function changeNum() , the
parameter num gets a copy o f the value o f myNum . When you change num to 3, you don't change the value
of myNum .

This process o f copying a value into a parameter when you pass an argument to a function is called pass-
by-value .

Now add this code to the program:

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> Functions: Pass by value </title>
 <meta charset="utf-8">
 <script>
 function changeNum(num) {
 num = 3;
 }
 var myNum = 10;
 changeNum(myNum);
 console.log(myNum);

 function changeObj(obj) {
 obj.x = 3;
 obj.z = 10;
 }
 var foo = {
 x: 0,
 y: 1
 };
 console.log("Before calling changeObj, foo is: ");
 console.log(foo);

 changeObj(foo);
 console.log("After calling changeObj, foo is: ");
 console.log(foo);
 </script>
</head>
<body>
</body>
</html>

 and . You see this output (or something similar; ours is from Chrome):

OBSERVE:

Before calling changeObj, foo is:
Object {x: 0, y: 1}
After calling changeObj, foo is:
Object {x: 3, y: 1, z: 10}

In the new code, we create an object f o o , which has two properties: f o o .x and f o o .y. We pass the object
f o o to the function changeObj() , and the object is bound to the parameter o bj. The function sets the value
of the property o bj.x to 3, and the value o f the property o bj.z to 10.

After we call changeObj() , passing f o o to the function, the properties o f f o o are different. JavaScript is
pass-by-value, which means that function parameters get a copy o f the value o f the arguments we pass to the
function. So how are the properties o f f o o being changed?

The value in the variable f o o is a reference—that is, a memory location, a po inter to the data in the object.
When we pass f o o to changeObj() , we pass a copy o f the memory location, no t a copy o f the data in the
memory location. So o bj (the parameter) is also a memory location, one that po ints to the same place as
f o o . When you change property values, or add new properties to o bj, you are making those changes and
additions to f o o , because they are po inting to the same object.

This concept o f pass-by-value can be a little tricky at first, so spend some time looking over this code to
make sure you understand it. Experiment on your own. Try passing an array to a function that changes the
array. Remember that arrays are objects too. Do you get the results you expect?

Return

Before we finish up this lesson, let's talk about the ret urn statement. ret urn is used to return a value from a
function. However, if you don't have a ret urn statement, the function still returns a value: undef ined (unless
you're using the function as a constructor, in which case it returns an object).

You might think that return would always be the last statement in the body o f your function, but it doesn't have
to be. You can use return to exit from a function early. Create a new file and add the code below, so we can
see how that works:

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> Functions </title>
 <meta charset="utf-8">
 <script>
 function getWeather(temp) {
 if (temp >= 80) {
 return "It's hot!";
 } else if (temp >= 50 && temp < 80) {
 return "It's nice!";
 console.log("test");
 } else {
 return "It's cold!";
 }
 }
 var returnValue = getWeather(71);
 console.log(returnValue);
 </script>
</head>
<body>
</body>
</html>

 Save this in your /AdvJS fo lder as f unct io ns6.ht ml, and . In the conso le, you see the
message "It's nice," but you won't see the message "test." We return a string from the get Weat her()
function, and then display that value in the conso le. So ret urnValue ho lds the value returned from the
function. Notice that we've got three ret urn statements in the function now. As soon as any one o f them is
executed, the function returns, so any code that fo llows the return statement will be ignored. When we return
the string, "It's nice," the function execution stops, so we never see the message "test" in the conso le.

When you return a value from a function, write your return statement with care. Change your code just a tiny bit
as shown:

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> Functions </title>
 <meta charset="utf-8">
 <script>
 function getWeather(temp) {
 if (temp >= 80) {
 return "It's hot!";
 } else if (temp >= 50 && temp < 80) {
 return "It's nice!";
 return
 "It's nice!";
 console.log("test");
 } else {
 return "It's cold!";
 }
 }
 var returnValue = getWeather(71);
 console.log(returnValue);
 </script>
</head>
<body>
</body>
</html>

 and . Now all you see in the conso le is undef ined; you don't see the message, "It's nice!"

Usually you can add whitespace in a JavaScript program without affecting the way the program executes, but
in this case, the function is no longer working as we expect.

This is an example o f "automatic semico lon insertion" and it's a ho ldover from when people used to write
JavaScript without using semico lons. JavaScript reads the above code like this:

OBSERVE:

return;
"It's nice!";

JavaScript thinks you forgot a semico lon at the end o f the return statement, so it "helpf ully" insert s o ne
f o r yo u, and in the process breaks your code. There is no error because "It's nice" is a valid expression and
statement (it doesn't do a whole lo t, but it's perfectly valid). So, your function returns when it hits the statement
ret urn; and, because you're returning with no value, the value returned from the function is undef ined. The
statement " It 's nice"; never gets executed (and even if it did, as a standalone statement, it wouldn't do
anything visible).

The ret urn statement is not the only situation where JavaScript does automatic semico lon insertion, but it's
a common cause o f errors, so watch out fo r it! You can read more about automatic semico lon insertion in the
JavaScript specification (5.1).

Take a break to rest your brain, and then tackle the quizzes and pro jects to digest all o f this new information.

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://www.ecma-international.org/ecma-262/5.1/#sec-7.9
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Scope
Lesson Objectives

When you complete this lesson, you will be able to :

use local scope and global scope.
use functions to create local scope.
recognize variables that are ho isted within a function.
use nested functions.
explore lexical scoping within nested functions.
use a scope chain to recognize how variables are reso lved.
use the Chrome Developer Too ls to inspect the scope chain.

Scope
To truly understand functions, and JavaScript in general, you need to understand scope. JavaScript has two kinds o f
scope: global, meaning a variable is visible everywhere, and local, meaning the variable is visible only within a
function. You're most likely using JavaScript in the browser, so you know that the global scope comes set up with an
object, windo w, which exposes all the browser-related JavaScript features you need to create web applications. In this
lesson, we'll dive into scope; we'll take another look at how variables and functions work from the perspective o f
scope, JavaScript's scoping rules, and how to plan your code to avo id certain "gotchas." We'll also use Chrome's
web developer too ls to inspect the function call stack and get a first-hand look at scope in action. Let's get go ing!

Variable Scope

We'll start by looking at the global scope. Here are three ways to create a global variable:

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> Global Scope </title>
 <meta charset="utf-8">
 <script>
 var globalScope1 = "Global";

 //
 // not using var to define a new variable is bad form!
 //
 globalScope2 = "Global";

 function f() {
 globalScope3 = "Global";
 }
 </script>
</head>
<body>
</body>
</html>

 Save this in your /AdvJS fo lder as glo balSco pe.ht ml, and . Open the conso le, and see
which o f the variables is defined globally:

INTERACTIVE SESSION:

> globalScope1
"Global"
> globalScope2
"Global"
> globalScope3
ReferenceError: globalScope3 is not defined

Both glo balSco pe1 and glo balSco pe2 are global variables, so you can inspect them in the conso le, but
we haven't called the function f () , so glo balSco pe3 hasn't yet been created. Call f () and then check again:

INTERACTIVE SESSION:

> f()
undefined
> globalScope3
"Global"

Now, glo balSco pe3 is defined, and it is a global variable. Why is glo balSco pe3 a global variable? After all,
we defined it inside the function f () . Well, no tice that we did not use var to declare the variable. When you use
a new variable in a function without using the keyword var, JavaScript automatically creates a new global
variable for you. This can be a problem if you're not expecting it! For instance, you could accidentally overwrite
the value o f an existing global variable if you use the same name and forget to write var. So, avo id using new
variable names within a function to create global variables. In general, always declare your variables with var,
whether they are global or local.

The term global scope describes the visibility o f your variables. Global variables are visible everywhere in
your JavaScript code, including in external files if you are loading external scripts. So smart JavaScript
programmers try to avo id global variables except when they're abso lutely necessary.

Global variables are added to the global object, which is the windo w object in all current browsers. Type
windo w in the conso le:

INTERACTIVE SESSION:

> window
Window {top: Window, window: Window, location: Location, external: Object, chrom
e: Object}

You see the window object and its many methods and properties. In Chrome, Safari, and Firefox, if you click
the arrow next to the object in the conso le, you'll see some familiar methods and properties. Scro ll down to
the properties starting with lower case "g" and look for the global variables you defined in the code above.
You see all three properties there. Scro ll back up to the "f"s and you see the function f () we defined.
Whenever you define a global variable, it's added to the global object as a property.

When you use a global variable or method, whether it's one you define yourself (like the global variables we
created above) or properties o f the global object (like alert () , co nso le.lo g() , o r do cument , the document
object), you don't have to specify windo w.alert () , o r windo w.glo balSco pe1; you can just type the name,
for instance, alert () o r glo balSco pe1. The global object is the default scope for all variables.

INTERACTIVE SESSION:

> window.globalScope1
"Global"
> globalScope1
"Global"

Both work, so we usually just leave o ff the "window" part.

Function Scope

The o ther kind o f scope in JavaScript is local scope. A local scope is created whenever you call a function:

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> Local Scope </title>
 <meta charset="utf-8">
 <script>
 var message = "Loading...";

 window.onload = function() {
 var message = "Done loading";
 var div = document.getElementById("container");
 div.innerHTML = message;
 }
 </script>
</head>
<body>
 <div id="container"></div>
</body>
</html>

 Save this in your /AdvJS fo lder as lo calSco pe.ht ml, and . You see the message "Done
loading" in the web page. Open the conso le and try to access the variables:

INTERACTIVE SESSION:

> message
"Loading..."
> div
ReferenceError: div is not defined

We can access the globally defined variable message , but not the locally defined variables message and
div. Plus, we've got two variables with the same name. The message that's defined inside the (anonymous)
function is a local variable, while the message defined above the function is a global variable. Similarly, the
variable div is a local variable.

Inside the function, we set the innerHT ML property o f the div object to the value o f the local message
variable (the one that is defined in the function) because the local message variable shadows the global
message variable. If you use a local variable with the same name as a global variable, the local variable is
used when you refer to it within the same function.

Parameters also have local scope. Let's change the code a bit so we can see how this works:

CODE TO TYPE:

var message = "Loading...";

window.onload = function() {
 var message = "Done loading";
 var div = document.getElementById("container");
 div.innerHTML = message;
 updateMessage(message);
}
function updateMessage(msg) {
 console.log(message);
 console.log(msg);
 var div = document.getElementById("container");
 div.innerHTML = msg;
}

 and . In the conso le, you see two messages:

OBSERVE:

Loading...
Done loading

The first parameteris from the line co nso le.lo g(message) . The value in the global variable message is
displayed, not the value defined in the windo w.o nlo ad function, even though we're calling
updat eMessage() from that function. Also, we're passing the value o f the local variable message from that
function to updat eMessage() , but giving it a new name as a parameter, msg. Remember that when you call
a function and pass an argument, the parameter o f the function gets a copy o f the argument value, so msg
gets a copy o f the string "Done loading." That's the second message you see in the conso le, and it's also the
message you see in the <div> in the web page.

msg is a local variable; it's local to the function updat eMessage() . Try to display the value o f msg in the
conso le:

INTERACTIVE SESSION:

> msg
ReferenceError: msg is not defined

You can't access a local variable outside the function in which it is defined.

You might be curious about how variable shadowing works. And if there's a global object into which all the
global variables are stashed, is there also a local object fo r local variables? We'll come back to these topics
shortly, when we talk about sco pe chains.

Hoisting

We've talked about the two kinds o f scope that JavaScript has: global and local. Let's take a closer look at
local scope, because sometimes local scope behaves in ways you might not expect, particularly if you have
blocks o f code in a function, and you're defining new variables within those blocks. By "block," we mean
perhaps a loop or an if statement, where the "block" consists o f all the statements inside the body o f the loop
or if statement (everything between the curly brackets {}):

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> Hoisting </title>
 <meta charset="utf-8">
 <script>
 var icecream = ["vanilla", "chocolate", "strawberry"];
 function init() {
 var flavorButton = document.getElementById("getFlavorButton");
 flavorButton.onclick = checkFlavor;
 }
 function checkFlavor() {
 console.log(flavor);
 if (icecream.length > 0) {
 var div = document.getElementById("container");
 var flavor = document.getElementById("flavor").value;
 if (flavor) {
 for (var i = 0; i < icecream.length; i++) {
 if (icecream[i] == flavor) {
 var found = true;
 div.innerHTML = "We have " + flavor;
 break;
 }
 }
 if (!found) {
 div.innerHTML = "Sorry, we don't have " + flavor;
 }
 }
 }
 console.log(flavor);
 }
 window.onload = init;
 </script>
</head>
<body>
<div id="container">Enter a flavor of ice cream you'd like: </div>
<form>
 <input type="text" id="flavor">
 <input type="button" id="getFlavorButton" value="Check flavor">
</form>
</body>
</html>

 Save this in your /AdvJS fo lder as ho ist ing.ht ml, and . You see a message asking you to
enter an ice cream flavor, a fo rm input to enter the flavor, and a button to submit the form.

Before you submit the form, take a close look at the code and make sure you understand how it works:

OBSERVE:

 var icecream = ["vanilla", "chocolate", "strawberry"];
 function init() {
 var flavorButton = document.getElementById("getFlavorButton");
 flavorButton.onclick = checkFlavor;
 }
 function checkFlavor() {
 console.log(flavor);
 if (icecream.length > 0) {
 var div = document.getElementById("container");
 var flavor = document.getElementById("flavor").value;
 if (flavor) {
 for (var i = 0; i < icecream.length; i++) {
 if (icecream[i] == flavor) {
 var found = true;
 div.innerHTML = "We have " + flavor;
 break;
 }
 }
 if (!found) {
 div.innerHTML = "Sorry, we don't have " + flavor;
 }
 }
 }
 console.log(flavor);
 }

We set up a click handler f o r t he f o rm but t o n t hat will call t he checkFlavo r() f unct io n when you
click the button. In the checkFlavo r() function we use a variable named f lavo r to ho ld the value you'll enter
into the form. Look at where that variable is defined in the function; we display its value in the conso le twice:
once at the top o f the function, before the f lavo r variable is defined, and once at the end o f the function, just
before the function finishes, and outside the if blo ck in which f lavo r is defined.

What do you think you'll see in the conso le when you run this code by entering an ice cream flavor and
clicking the button?

Okay, make sure your conso le is open, and enter "vanilla." You see the message "We have vanilla" in the
page. Check out the values displayed in the conso le.

OBSERVE:

undefined
vanilla

The first co nso le.lo g(f lavo r) displays undef ined, while the second co nso le.lo g(f lavo r) displays
vanilla.

You might have expected to get an error fo r the first co nso le.lo g(f lavo r) call, because the f lavo r variable
hasn't been defined yet, and usually when you try to access a variable that isn't defined, you get a Reference
Error. (If you need to refresh your memory about Reference Errors, just go back to the conso le and enter the
name of a variable that's not defined by this program, like x.)

Why don't we get a Reference Error when we try to access f lavo r before it's been defined, or after the block
that encloses the definition o f f lavo r has ended? The answer is: hoisting. Ho isting is an informal name for a
quirky behavior in JavaScript: no matter where you define a variable within a function, the variable declaration
is moved (or "ho isted") up to the top o f the function. Read that again. Notice that only the declaration is
moved; not the initialization. So, it's as if you'd written the checkFlavo r() function like this:

OBSERVE:

function checkFlavor() {
 var flavor;
 console.log(flavor);
 if (icecream.length > 0) {
 var div = document.getElementById("container");
 var flavor = document.getElementById("flavor").value;
 if (flavor) {
 for (var i = 0; i < icecream.length; i++) {
 if (icecream[i] == flavor) {
 var found = true;
 div.innerHTML = "We have " + flavor;
 break;
 }
 }
 if (!found) {
 div.innerHTML = "Sorry, we don't have " + flavor;
 }
 }
 }
 console.log(flavor);
}

flavor is declared when we access it in the first co nso le.lo g(f lavo r);. It's declared, but it's not initialized, so
the value o f flavor is undef ined. That's why you see undef ined as the result o f the first
co nso le.lo g(f lavo r);. Then, we set its value to the value you type into the form, and that remains the value
when we reach the second co nso le.lo g(f lavo r);.

Ho isting take place for all the local variables in checkFlavo r() . Can you find the o ther variables in the
function that are ho isted?

If you have experience with another language, perhaps Java or C#, this ho isting behavior may surprise you,
because many languages have a third type o f scope: block scope. In block scope, a variable like f lavo r
would be defined only within the block where it's declared and initialized, and not outside that block. In that
case, you would get a reference error if you tried to access f lavo r in the two co nso le.lo g(f lavo r);
statements. However, JavaScript does not have block scope. It only has global and local scope. All local
variables are visible everywhere within a function, even if they are declared and initialized within a block.

Note As of this writing, JavaScript does not have block scope, but it will probably be added at some
point.

Nested Functions

Sometimes in JavaScript, we nest functions inside o ther functions. Usually these are "helper" functions that
are used only by the function enclosing the nested functions. Let's take a look at an example, and then talk
about how scope works for nested functions.

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> Nested Functions </title>
 <meta charset="utf-8">
 <style>
 .red {
 background-color: red;
 }
 .blue {
 background-color: lightblue;
 }
 .pink {
 background-color: pink;
 }
 </style>
 <script>
 window.onload = function() {
 var theId = "list";

 findElement(theId);
 }

 function findElement(id) {
 var color = "red";
 var el = document.getElementById(id);
 if (el) {
 changeAllBlueChildren(el);
 }

 function changeAllBlueChildren(el) {
 for (var i = 0; i < el.childElementCount; i++) {
 var child = el.children[i];
 if (child.tagName.toLowerCase() == "li") {
 var theClass = child.getAttribute("class");
 if (theClass == "blue") {
 child.setAttribute("class", color);
 }
 }
 }
 }
 }
 </script>
</head>
<body>
 <ul id="list">
 <li class="red">I'm already red
 <li class="blue">I'm blue
 <li class="blue">I'm blue too
 <li class="pink">And I'm pink

</body>
</html>

 Save this in your /AdvJS fo lder as nest ed.ht ml, and . The first three items in the list are red,
and the last one is pink. In the HTML and CSS, the second and third items are in the "blue" class, so normally
the background o f those items would be "lightblue," but we changed that using the code.

In the code, you can also see that we have a windo w.o nlo ad function that is called when the page is loaded;
that function calls f indElement () , which finds the element with the id "list," and calls
changeAllBlueChildren() . changeAllBlueChildren() iterates through all o f the child elements o f the list
(all the elements), and if the class o f the element is "blue," changeAllBlueChildren() changes the class
to "red."

OBSERVE:

 function findElement(id) {
 var color = "red";
 var el = document.getElementById(id);
 if (el) {
 changeAllBlueChildren(el);
 }

 function changeAllBlueChildren(el) {
 for (var i = 0; i < el.childElementCount; i++) {
 var child = el.children[i];
 if (child.tagName.toLowerCase() == "li") {
 var theClass = child.getAttribute("class");
 if (theClass == "blue") {
 child.setAttribute("class", color);
 }
 }
 }
 }
 }

Here we're exploring nested functions. The f indElement () function has a nest ed f unct io n in it: a function
defined within a function. Unlike global functions like f indElement () and windo w.o nlo ad function,
changeAllBlueChildren() is a local function, visible only within f indElement () . If you try to access the
function in the conso le (or try to call it from outside o f the f indElement () function), you'll get a reference
error:

INTERACTIVE SESSION:

> changeAllBlueChildren
ReferenceError: changeAllBlueChildren is not defined

Essentially, changeAllBlueChildren() is hidden except within f indElement () . (We'll come back to the
concept o f data hiding later in the course).

We're using a function declaration to declare the changeAllBlueChildren() function. What do you think
would happen if we changed the code to declare the function using a function expression instead?

CODE TO TYPE:

function changeAllBlueChildren(el) {
var changeAllBlueChildren = function(el) {
 ...
}

 and .

OBSERVE:

> Uncaught TypeError: undefined is not a function

Just like o ther local variables in a function, the changeAllBlueChildren variable is hoisted. So now,
changeAllBlueChildren is implicitly declared at the top o f the function but is undefined (just like all the o ther
local variables). Since we don't assign the function expression to the variable until after we call the function,
we get an error. We're trying to call the variable changeAllBlueChildren while it's still undefined, and before
it is assigned the function expression.

Go ahead and change your code back to use a function declaration instead. The function declaration is also
defined after we call the function, but, unlike a function defined with a function expression, a nested function
declaration is visible throughout the function in which it's nested. This is similar to the way functions declared
at the global level work: you can put them at the bottom of your code, but access them anywhere in your code.
Here, we've placed the changeAllBlueChildren function declaration at the bottom of the f indElement ()
function, but now (using a function declaration rather than a function expression) it's visible (and defined!)
throughout the f indElement () function.

Lexical Scoping

Now let's take a look at what happens to the scope o f variables when you have nested functions. Remember
earlier we said local variables are visible throughout the function in which they are declared. Let's see where
the variables in this program are visible.

OBSERVE:

 window.onload = function() {
 var theId = "list";
 findElement(theId);
 }

 function findElement(id) {
 var color = "red";
 var el = document.getElementById(id);
 if (el) {
 changeAllBlueChildren(el);
 }

 function changeAllBlueChildren(el) {
 for (var i = 0; i < el.childElementCount; i++) {
 var child = el.children[i];
 if (child.tagName.toLowerCase() == "li") {
 var theClass = child.getAttribute("class");
 if (theClass == "blue") {
 child.setAttribute("class", color);
 }
 }
 }
 }
 }

We'll start with t heId. This variable is defined in the windo w.o nlo ad function, and so is not visible globally
or in f indElement () . However, we pass it to f indElement () , which gets a copy o f its value, in the parameter

variable id. id is local to f indElement () , so we can access it anywhere in that function, but again, not
globally. Similarly, co lo r and el are local variables, visible anywhere in f indElement () .

Next, look at changeAllBlueChildren() . We have a parameter, el, and several local variables, including i,
child, and t heClass, all o f which are local to changeAllBlueChildren() .

There's some interesting stuff happening here. We're using the variable co lo r inside
changeAllBlueChildren() , even though co lo r is not defined in changeAllBlueChildren() , and it's not a
global variable. This is possible because changeAllBlueChildren() is nested within f indElement () ,
co lo r is visible inside the nested function, so we can access it just as if it were a local (or global) variable
inside changeAllBlueChildren() . This is known as lexical scoping. That means, when you are using a
variable, like co lo r, you figure out the value o f the variable by first looking in the local scope (that is, in
changeAllBlueChildren()), and then in the next outer scope. Typically, the next outer scope is the global
scope, but in this case, because changeAllBlueChildren() is nested within another function, the next outer
scope is f indElement () . That's where co lo r is defined, so that's the value we use in
changeAllBlueChildren() .

Take a look at el. We have the parameter, el, which is local to changeAllBlueChildren() , and we have the
variable el in f indElement () which is visible throughout f indElement () , including within
changeAllBlueChildren() ! So which value do we use? Well, remember that the el defined within
changeAllBlueChildren() will shadow the el in f indElement () . How? Because o f lexical scoping. When
we use el in changeAllBlueChildren() , we first look for it in the local scope, and we find its value there, so
that's the one we use.

If you don't find a variable within a local scope at all, then you look in the global scope. If it's not there, you get
a Reference Error.

Well, we've talked about how functions are good for organizing bits o f code. That's what we're do ing here. We
put all the code related to changing the blue children o f an element to red in this function, which makes the
code easier to read and understand, and also creates a chunk o f code that's easy to reuse. In this case, we
only call the changeAllBlueChildren() once, but you can imagine that we might end up calling it multiple

times. By nesting the function inside f indElement () , we keep it hidden from other code that doesn't need to
know about it, and organize our code so that the related bits are together. If we wanted to use
changeAllBlueChildren() somewhere else in our code, we'd have to move it out o f f indElement () so it
would be accessible to o ther code to call.

There is a downside to nested functions: a nested function like changeAllBlueChildren() has to be
recreated every time you call the function in which it's nested, while functions defined at the global level are
created only once and stick around for the duration o f your program. In our case, that's okay; we call
f indElement () just once, so we're creating changeAllBlueChildren() just once. In small to medium-sized
programs, you might find that the organizational benefit o f nested functions outweighs the performance hit.
However, if you're building an application that needs to be as fast as possible, you'll want to avo id nested
functions.

Scope Chains

You know that JavaScript has two kinds o f scope: global and local. You also know that scope works
"lexically." When you are looking to resolve a variable (determine what its value is when you use it), first you
look in the local scope o f the function you're in, if you don't find it, you look in the surrounding scope, and so
on, until you get to the global scope. If you don't find the variable in any o f those places, you get an error.

The way scope works behind the scenes is through a scope chain. A scope chain is created in two stages: the
first stage is when the function is defined, and the second, when the function executes. When you define a
function, the initial scope chain is created. You can think o f the scope chain as a list o f po inters from the
function to the scopes that surround the function at define time. These scopes are in order, so that the scope
at the top o f the chain (the first position) is the scope immediately surrounding the function (usually the global
scope, unless the function is nested), and subsequent scopes are further out (like the layers in the previous
diagram).

In the second stage, when the function executes, an activation object is created. This object represents the
state o f the function as it executes, so it contains all the local variables, as well as t his (which is usually the
global object, windo w) . The activation object is added to the top (the first position) o f the scope chain. When
a function is executing and it comes across a variable and needs to reso lve that variable to know what the
value is, the function starts at the first position in the scope chain, which is the activation object. If the function
finds the variable there (that is, the variable is a local variable to the function), it stops there, and uses that
value. If the function doesn't find the variable there, it looks in the next position in the scope chain, and so on.
The function continues down the chain until it finds a scope that contains the variable. If it gets to the end—the
global scope is always the last stop in the chain—and hasn't found the variable, then we get a Reference
Error.

Let's take a look at the scope chains for the functions in our specific example. The windo w.o nlo ad function
is defined at the top level, so its define-time scope chain is the global object. When windo w.o nlo ad is called
(by the browser, when the page is loaded), an activation object is added to the top o f the scope chain. So,
when we look for the value o f the variable t heId, we find it in the activation object, and don't have to look any
further down the chain.

Similarly, f indElement () is globally defined, so at define time, the global object is added to the scope chain,
and at execution time—when we call the function—the activation object is added to the chain. That's where we
look first to find the values o f the variables used in the function, like id and el, as well as do cument .
do cument is not defined in the activation object, so we look in the global object and find do cument there.

When we call f indElement () , changeAllBlueChildren() is defined. At define time, we have an extra scope
object in the chain: the f indElement () scope object. Because changeAllBlueChildren() is defined within
the f indElement () function, it's defined in the f indElement () function's scope. The extra scope object
contains any variables that are referenced from the nested function. In this case, that's just the co lo r variable.
When we call changeAllBlueChildren() , its activation object is added to the chain. When we look for the
variable co lo r, first we look in the activation object, but since we don't find it there, we look in the
f indElement () scope, find it, and o we stop looking.

Inspecting the Scope Chain

You can use the Chrome developer too ls to see the scope chain in action as your code runs. Make sure you
have the file nest ed.ht ml loaded into a browser page and the conso le window open in the Chrome browser
(unfortunately, the o ther browsers' built- in too ls don't o ffer the same capability yet, so you'll need Chrome to
fo llow along).

Click the So urces tab. If you don't see anything in the left panel in the conso le, click the small right-po inting
Sho w Navigat o r arrow at the top left o f the conso le and select your file, nest ed.ht ml. Once you do that,
you see the source code o f the file:

In the panel on the right side, make sure you have the Call Stack, Scope Variables, and Breakpo ints sections
open (the arrows next to them are po inted down).

Now, add breakpo ints to your code. A breakpo int is a way to tell the browser to stop executing your code at a
certain po int. You add a breakpo int by clicking on one o f the line numbers in the far left side o f the left panel.
When you add a breakpo int, you'll see a little blue marker indicating the line o f code where the breakpo int is
located. Add three breakpo ints: one on the line where we call f indElement () in windo w.o nlo ad; one on the
line where we call changeAllBlueChildren() in f indElement () , and one at the very bottom of
changeAllBlueChildren() (the closing curly brackets for the function, which is the second to last curly
bracket in the file). Look in the panel on the right, under Breakpo ints, to verify that you've clicked on the correct
lines.

Now, reload the page. Don't worry, your breakpo ints will stay in place. When you do, you see a "Paused in
debugger" message in the web page at the top, and the line o f code at the first breakpo int is highlighted which
indicates that the execution has paused at that line:

In the Call Stack section in the panel on the right, you see windo w.o nlo ad. That's because we called
windo w.o nlo ad, and we paused execution just before we call f indElement () . Now, look at the Scope
Variables section. This is the scope chain. At the top o f the chain is the local scope; you can see the local
variables defined there, including t heId and t his. Next you see the global scope, with all o f its usual content
(you can open it up to see, but it contains many properties, so be sure and close it when you're finished).

Now, we want to continue the execution o f the code until we hit the next breakpo int. Click the small button that
looks like a "play" button (Resume script execut io n) at the top left o f the right panel. When you click this
button, execution resumes, until it hits the next breakpo int located at the line where we call
changeAllBlueChildren() :

Again the execution stops just before we call the function, so we can inspect the call stack and the scope
variables. Notice under Call Stack in the panel on the right, we now have f indElement () on top, and
windo w.o nlo ad below. That means that we called f indElement () from windo w.o nlo ad. Now look at the
Scope Variables. The top part o f the scope chain includes the local variables defined by f indElement () .
Below that is the global scope. Before you move on, notice that the second and third items in the list are still
blue because we haven't called changeAllBlueChildren() yet!

Continue the code execution by clicking the Resume script execut io n button. Now the execution stops on
the very last line o f the changeAllBlueChildren() function—on the curly brace, at the moment just before
this function returns.

Now the second and third items in the list are red. Notice the Call Stack; you can see that
changeAllBlueChildren() is at the top. We called changeAllBlueChildren() from f indElement () , which
we called from windo w.o nlo ad (the Call Stack is useful fo r tracking which functions are calling which!).

Look at the Scope Variables. You see that the local variables for the changeAllBlueChildren() function at
the top o f the scope chain. Below that is something called Clo sure . This is the scope chain object fo r the
f indElement () scope, containing the co lo r variable. Twirl down (click so it's po inting downward) the arrow
next to Clo sure so you can see it. (We'll explain why it's called Closure in another lesson). Then, at the
bottom of the scope chain is the global scope.

Click Resume script execut io n one more time to continue execution and complete the code execution.
The page returns to normal. Your breakpo ints are still there (they will stay there until you delete them) so if
you want to do this again, you can simply reload the page and go through the same steps. To remove the

breakpo ints, click the blue markers and they will disappear. Once you've removed the breakpo ints, if you
reload the page, the page will behave as it usually does, and execute the code all the way through with no
stops.

In this lesson, you learned all about scope, including the details o f how it works with the scope chain. Nested functions,
sometimes called "inner functions," create additional levels in the scope chain, so we explored how to create nested functions
and how scope works when you have a nested function. Lexical scoping is a rule that lets us find the correct value o f a variable
to use by looking in each level o f the scope chain, from the top (first) position, to the bottom position (always the global scope).

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Invoking Functions
Lesson Objectives

When you complete this lesson, you will be able to :

call a function as a function.
call a function as a method.
call a function as a constructor.
call a function with apply() and call().
use t his when we call functions in different ways.
compare how t his is defined in nested functions with how it is defined in global functions.
contro l how t his is defined with apply() and call().
use the argument s object to create functions that support a variable number o f arguments.

Invoking Functions
In JavaScript we call, o r invoke, functions in many different ways. We call built- in functions, we create and call our own
functions, we use functions as constructors, we call methods in objects, and more. In this lesson, we'll look at all the
different ways we can call functions, and the reasons we use each.

Note Invoke is just another word for call. We'll use both terms interchangeably throughout the lesson.

Different Ways to Invoke Functions

By now, you are familiar with how to call functions in JavaScript. It's difficult to write a script without calling at
least one function. Perhaps you're calling a built- in function, like alert , o r a function you've written yourself, o r
one that's supplied by a JavaScript library (like jQuery). Let's look at an example that has a couple o f different
kinds o f function calls:

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> Calling a function </title>
 <meta charset="utf-8">
 <script src="http://code.jquery.com/jquery-latest.min.js"></script>
 <script>
 function callMeMaybe(number) {
 return "Call me at " + number;
 }

 window.onload = function() {
 var number = callMeMaybe("555-1212");
 $("body").append("<div>" + number + "</div>");
 alert("Content added");
 }
 </script>
</head>
<body>
</body>
</html>

 Save this in your /AdvJS fo lder as f unct io nCalls.ht ml, and . You see the text "Call me at
555-1212" in the page, and an alert with the text, "Content added."

Here we see examples o f two o f the four different ways you can invoke functions in JavaScript:

as a f unct io n
as a met ho d
as a constructor (we'll get to this later)
with apply() o r call() (we'll get to this later too)

First, we create and invoke our own function, callMeMaybe() , as a function (that is, callMeMaybe() is a
regular function that we call in the normal way we call functions). We also call a function supplied by jQuery,
$() (which is shorthand for the jQuery() function—and yes, $ is a valid name for a function). Again, we call
the $() function as a function.

The second way to invoke a function is as a method. There are two method calls in this example:
$("bo dy").append() and alert () . append() is a method o f the jQuery object returned from the $() function.
We use "dot notation" to call it, as we would any method.

So what about alert ()? Well, remember earlier in the course, we said that built- in JavaScript functions like
alert () are actually methods o f the global windo w object, which is the default object used to run JavaScript
programs in the browser. Because it's the default object, if you don't specify it fo r methods and properties (like
with our call to alert ()), JavaScript assumes you mean windo w.alert () . So calling alert () is actually a
method call, no t a function call.

There's actually a third method call implied in this code. Can you find it? It's the function assigned to the
windo w.o nlo ad property. We don't call this method ourselves; the browser is calls it fo r us when the page
has completed loading.

An important distinction between calling a function as a function and as a method is that (most o f the time)
you need to use the dot notation to call a method. You specify the name of the object, like windo w, and the
name of the method, like alert () , and separate the two with a dot (period) to get windo w.alert () . To call a
function, you use the function name.

Let's look at the third way to call a function:

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> Calling a function as a constructor </title>
 <meta charset="utf-8">
 <style>
 .square {
 background-color: lightblue;
 cursor: pointer;
 }
 .circle {
 background-color: orange;
 cursor: pointer;
 }
 .square p, .circle p {
 padding-top: 35%;
 text-align: center;
 -webkit-user-select: none;
 -moz-user-select: none;
 -ms-user-select: none;
 user-select: none;
 }
 </style>
 <script>
 function Square(id, name, size) {
 this.id = id;
 this.name = name;
 this.size = size;

 this.display = function() {
 var el = document.getElementById(this.id);
 el.style.width = this.size + "px";
 el.style.height = this.size + "px";
 el.innerHTML = "<p>" + this.name + "</p>";
 console.log(this.name + " has size " + this.size +
 ", and is a " + this.constructor.name);
 };
 }
 window.onload = function() {
 var square = new Square("s1", "square one", 100);
 square.display();
 }
 </script>
</head>
<body>
<div id="s1" class="square"></div>
</body>
</html>

 Save this in your /AdvJS fo lder as co nst ruct o rCall.ht ml, and . A light blue square with the
text "square one" appears in the page. In the conso le, you see the message "square one has size 100, and
is a Square."

As we mentioned in the lesson on constructing objects, when you invoke a function with the new keyword,
you are calling that function as a constructor rather than as a function. So here, when we invoke the Square()
function with new Square(...) , we're invoking that function as a constructor.

Constructors create an object, which we can reference with the t his keyword to assign it property values, and
that object is returned automatically by the constructor. Any function can be invoked as a constructor
(although if you invoke a function not designed specifically as a constructor with new, you probably won't get
a useful object back). As convention dictates, we begin constructor functions' names with an uppercase letter
to distinguish these functions from regular functions.

Many objects have methods as properties. We create the Square object with the Square() constructor, so
you can see here an example o f invoking a function as a method, too: square.display() .

The fourth, and final, way to invoke a JavaScript function is indirectly, using the function object's call() and
apply() methods. You haven't seen these methods yet, so we'll spend a significant amount o f time on the
subject here. The main reason to use these methods is to contro l how t his is defined, so first we'll talk about
what happens to t his in each o f the ways we invoke functions.

What Happens to this When You Invoke a Function

The rules for how t his is defined when you invoke a function depend on how you invoke the function and the
context in which you invoke it. Let's take a look at some examples. We'll modify the previous example o f the
Square constructor to illustrate. Copy the previous file to a new file, t his.ht ml, and modify it as shown:

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> What happens to this? </title>
 <meta charset="utf-8">
 <style>
 .square {
 background-color: lightblue;
 cursor: pointer;
 }
 .circle {
 background-color: orange;
 cursor: pointer;
 }
 .square p, .circle p {
 padding-top: 35%;
 text-align: center;
 -webkit-user-select: none;
 -moz-user-select: none;
 -ms-user-select: none;
 user-select: none;
 }
 </style>
 <script>
 var n = 0;

 function Square(id, name, size) {
 console.log("This at the top of the Square constructor: ");
 console.log(this);
 this.id = id;
 this.name = name;
 this.size = size;

 this.display = function() {
 console.log("This in the Square's display method: ");
 console.log(this);
 var el = document.getElementById(this.id);
 el.style.width = this.size + "px";
 el.style.height = this.size + "px";
 el.innerHTML = "<p>" + this.name + "</p>";
 console.log(this.name + " has size " + this.size +
 ", and is a " + this.constructor.name);
 };
 console.log("This at the bottom of the Square constructor: ");
 console.log(this);
 }
 window.onload = function() {
 console.log("This in window.onload: ");
 console.log(this);
 var square = new Square("s1", "square one", 100);
 setupClickHandler(square);
 square.display();
 }
 function setupClickHandler(shape) {
 console.log("This in setupClickHandler: ");
 console.log(this);
 var elDiv = document.getElementById(shape.id);
 elDiv.onclick = function() {
 console.log("This in click handler: ");
 console.log(this);
 n++;
 var counter = document.getElementById("counter_" + shape.id);
 counter.innerHTML = "You've clicked " + n + " times.";
 };
 }
 </script>

</head>
<body>
 <div id="s1" class="square"></div>
 <p id="counter_s1"></p>
</body>
</html>

 Save the file in your /AdvJS fo lder as t his.ht ml and . We added some calls to
co nso le.lo g() in several places (make sure you find them all now, because we'll refer to each o f them
below) We also added a whole new function, set upClickHandler() , which adds a click handler to the "s1"
<div>, so that when you click on the "s1" <div> you'll see a message indicating how many times you've
clicked on that <div>. Open the conso le (reload the page if you don't see any output), and you see messages
like this:

OBSERVE:

> This in window.onload:
Window {top: Window, window: Window, location: Location, external: Object, chrom
e: Object}
> This at the top of the Square constructor:
Square {}
> This at the bottom of the Square constructor:
Square {id: "s1", name: "square one", size: 100, display: function}
> This in setupClickHandler:
Window {top: Window, window: Window, location: Location, external: Object, chrom
e: Object}
> This in the Square's display method:
Square {id: "s1", name: "square one", size: 100, numClicks: 0, display: function
}
> square one has size 100, and is a Square

Each o f these co nso le.lo g() messages displays the value o f t his at a particular spot in your code.

T he f irst message is from the co nso le.lo g() in the windo w.o nlo ad function. When you call the method
of an object, typically, t his refers to the object. That's the case here: we called the function assigned to the
windo w.o nlo ad property (and thus, that function is a method), so t his in that method is the windo w object.

T he seco nd message is from the co nso le.lo g() at the top o f the Square() constructor function. Here,
t his is set to a brand new object (the one created by the constructor), and because we have yet to set any o f
its properties, that object is empty.

At the end o f the Square() constructor, we see t he t hird message after we add properties and methods to
the object being created by the constructor. In the message we see a fully constructed Square object that will
be returned to the code that called new Square() .

T he f o urt h message is from the co nso le.lo g() in the set upClickHandler() , which we call just before we
call square.display() . The value o f t his in set upClickHandler() is also the windo w object, but fo r an
entirely different reason. Here, t his is set to the windo w object because set upClickHandler() is a globally
defined function we've created, and the context in which it is being called is the windo w object—that is, the
global object. Whenever you call a globally defined function as a function, t his is set to the windo w object
(unless you've set it to something else).

T he last t wo messages are from the co nso le.lo g()s in the square.display() method. t his is set to the
Square object; that is the method we called from Square object.

We don't see the message in the "s1" <div> click handler yet (assuming you haven't clicked on that <div> yet;
if you have, just reload the page and don't click on it so that your messages match ours).

Now, click on the "s1" <div> (by clicking anywhere on the text). More text appears in the page, "You've clicked
1 times." and in the conso le, you see:

OBSERVE:

>This in click handler:
<div id="s1" class="square" style="width: 100px; height: 100px;">...</div>

This is the message from the co nso le.lo g() in the function we've assigned to the o nclick property o f the
"s1" <div>. Because we're assigning a function to the click property o f an object (an element object
representing the <div>), this function is actually a method. Within that method, t his is set to the object that
contains the method we're calling—that is, the "s1" <div>.

Try clicking again. Notice that we increment the global variable n each time you click in order to keep track o f
the to tal number o f times you've clicked. (As an exercise, think about why n has to be a global variable here.)

So far so good; everything is pretty much as we'd expect. Now let's make a change and see what happens:

CODE TO TYPE:

...
 var n = 0;

 function Square(id, name, size) {
 console.log("This at the top of the Square constructor: ");
 console.log(this);
 this.id = id;
 this.name = name;
 this.size = size;
 this.numClicks = 0;

 this.display = function() {
 console.log("This in the Square's display method: ");
 console.log(this);
 var el = document.getElementById(this.id);
 el.style.width = this.size + "px";
 el.style.height = this.size + "px";
 el.innerHTML = "<p>" + this.name + "</p>";
 console.log(this.name + " has size " + this.size +
 ", and is a " + this.constructor.name);
 };

 this.click = function() {
 console.log("This in the Square's click method: ");
 console.log(this);
 this.numClicks++;
 document.getElementById("counter_" + this.id).innerHTML =
 "You've clicked " + this.numClicks + " times on " + this.name;

 };
 console.log("This at the bottom of the Square constructor: ");
 console.log(this);
 }
 window.onload = function() {
 console.log("This in window.onload: ");
 console.log(this);
 var square = new Square("s1", "square one", 100);
 setupClickHandler(square);
 square.display();
 }
 function setupClickHandler(shape) {
 console.log("This in setupClickHandler: ");
 console.log(this);
 var elDiv = document.getElementById(shape.id);
 elDiv.onclick = function() {
 console.log("This in click handler: ");
 console.log(this);
 n++;
 var counter = document.getElementById("counter_" + shape.id);
 counter.innerHTML = "You've clicked " + n + " times.";
 };
 elDiv.onclick = shape.click;
 }
...

 and preview. We replaced the click handler fo r the "s1" <div> that we defined in
set upClickHandler() with a method o f the square object, square.click() (we assign it to the o nclick
property with shape.click in the set upClickHandler() function since we're passing the square into a
paramater named shape). Essentially the method performs the same task as the previous click handler did,
except that now we keep track o f the number o f clicks on the book with a property o f the square object,
square.numClicks, rather than with a global variable.

Now try clicking on the "s1" <div> as you did before. It doesn't work! You see the text "You've clicked NaN
times on the book" in the page. Recall that NaN means "Not a Number," so something went wrong with the
counter. In addition, we don't see the name of the book like we should.

Look at the code for the click() method:

OBSERVE:

this.click = function() {
 console.log("This in the Square's click method: ");
 console.log(this);
 this.numClicks++;
 document.getElementById("counter_" + this.id).innerHTML =
 "You've clicked " + this.numClicks + " times on " + this.name;
};

We don't see the correct values for either t his.numClicks o r t his.name . Looking at the conso le again,
you'll see that the value o f t his in the click() method is the "s1" <div> object (the element object), and not the
square object:

INTERACTIVE SESSION:

> This in the Square's click method:
<div id="s1" class="square" style="width: 100px; height: 100px;">...</div>

So here, the "s1" <div> object replaces the normal value o f t his in the method square.click() . In fact, t his
will be defined as the target element object in any function that you use as the handler fo r an event like "click."
This behavior comes in handy when we want to access the element that was clicked in the click handler, but in
this case, the behavior is treading on our expectations o f what t his should be in the method o f the square
object.

Fortunately, there's an easy way around it. Instead o f writing:

OBSERVE:

elDiv.onclick = shape.click;

we can write:

OBSERVE:

elDiv.onclick = function() {
 shape.click();
}

Now, t his is set to the "s1" <div> in the outer click handler function (the anonymous function we're assigning
to the o nclick property o f the elDiv), but when we call shape.click() from within that function, t his gets set
to the square object that we passed into set upClickHandler() (because now we're calling the method
normally, as a method o f an object, rather than as an event handler). If you need the "s1" <div> object in the
click handler fo r some reason, you could pass t his to the method:

OBSERVE:

elDiv.onclick = function() {
 shape.click(this);
}

...and change the click() method in the Square constructor to have a parameter to take this argument.

We don't need the "s1" <div> in the click() method, so for now, just change your code like this:

CODE TO TYPE:

...
function setupClickHandler(book) {
 var elDiv = document.getElementById(shape.id);
 elDiv.onclick = shape.click;
 elDiv.onclick = function() {
 console.log("This in click handler: ");
 console.log(this);
 shape.click();
 };
}
...

 and . Now the page updates correctly when you click the "s1" <div>, and in the conso le, you'll
see that t his is set to the "s1" <div> object in the click handler function, and to the square object in the
square.click() method, as you'd expect.

Note

JavaScript's treatment o f t his in event handlers is a tricky subject. If you use inline event
handlers (not recommended!), such as <p o nclick="click()"> , t his will refer to the global
window object, not the <p> element object. Similarly, if you use the (now o ld) at t achEvent ()
function in IE8 and earlier, t his will refer to the window object. In order to maintain consistency
when handling t his, we recommend that you use the o nclick property to set your click handlers
(and o ther common event handlers), o r addEvent List ener() if you know all your users are on
IE9+. In both o f these cases, t his will be set to the element that is clicked in the event-handling
function.

The key po int to understand in this section o f the lesson is that the value o f t his is different depending on
how you invoke a function, and you'll want to know what the value o f t his will be in these different situations.

Nested Functions

The value o f t his in nested functions might not be what you expect. Let's check out an example. Create a new
HTML file as shown:

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> Nested functions </title>
 <meta charset="utf-8">
 <script>
function outer() {
 console.log("outer: ", this);
 inner();

 function inner() {
 console.log("inner: ", this);
 }
}
outer();
 </script>
</head>
<body>
</body>
</html>

 Save this in your /AdvJS fo lder as self .ht ml, and . In the conso le, you see:

OBSERVE:

outer:
Window {top: Window, window: Window, location: Location, external: Object, chrom
e: Object}
inner:
Window {top: Window, window: Window, location: Location, external: Object, chrom
e: Object}

The first result should not be a surprise: we know that when you call a globally defined function, t his is set to
the global window object.

The value o f t his is the window object in the inner() function too. You might be surprised if you expected
t his to be defined as the function o ut er (since o ut er is an object—yes, functions are objects too!). Another
thing to remember about t his.

How about when you're inside an object constructor and call a nested function?

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> Nested functions </title>
 <meta charset="utf-8">
 <script>
function outer() {
 console.log("outer: ", this);
 inner();

 function inner() {
 console.log("inner: ", this);
 }
}
outer();

function MakeObject() {
 this.aProperty = 3;

 console.log("outer object: ", this);

 function inner() {
 console.log("inner to object: ", this);
 }
 inner();
}
var outerObject = new MakeObject();
 </script>
</head>
<body>
</body>
</html>

 and . The results you see this time might be even more surprising:

OBSERVE:

outer object: MakeObject {aProperty: 3}
inner to object:
Window {top: Window, window: Window, location: Location, external: Object, chrom
e: Object}

t his is defined to be the object we're creating in the MakeObject () constructor in the first message (as
expected), but inside o f the inner() function (that defines and calls inside the constructor). t his is defined as
the global window object. We "lose" the value o f t his (that is, the object we're creating) in the nested function.

As a result o f this behavior, a common idiom in JavaScript is to "save" the value o f t his in another variable
so it's accessible to the nested function, like this:

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> Nested functions </title>
 <meta charset="utf-8">
 <script>
function outer() {
 console.log("outer: ", this);
 inner();

 function inner() {
 console.log("inner: ", this);
 }
}
outer();

function MakeObject() {
 this.aProperty = 3;

 console.log("outer object: ", this);

 var self = this;
 function inner() {
 console.log("inner to object: ", thisself);
 }
 inner();
}
var outerObject = new MakeObject();
 </script>
</head>
<body>
</body>
</html>

 and preview. Now you see:

OBSERVE:

outer object: MakeObject {aProperty: 3}
inner to object: MakeObject {aProperty: 3}

We saved the value o f t his in the variable self before calling inner() . Because o f lexical scoping, the inner()
function can see the value o f self , and so can access the object being created by the constructor.

Note The behavior we've just described (t his defined as the global window object in nested
functions) may change in a later version o f JavaScript.

When You Want to Control How this is Defined

So you've seen how t his is defined when you invoke (global) functions as functions, when you invoke
functions as constructors, when you invoke functions as methods, and in the special cases when you invoke
functions as click event handlers, and when you invoke nested functions.

In all these cases, JavaScript rules determine how t his is defined. But what if you want to take contro l and
define your own value for t his when you invoke a function?

That's when we use apply() and call() . These methods are designed specifically to allow you to define the
value o f t his inside a function you invoke with apply() o r call() .

Let's say you decide to add another shape to your program. Edit t his.ht ml as shown:

CODE TO EDIT: this.html

...
 <script>
 function Square(id, name, size) {
 this.id = id;
 this.name = name;
 this.size = size;
 this.numClicks = 0;

 this.display = function() {
 var el = document.getElementById(this.id);
 el.style.width = this.size + "px";
 el.style.height = this.size + "px";
 el.innerHTML = "<p>" + this.name + "</p>";
 console.log(this.name + " has size " + this.size +
 ", and is a " + this.constructor.name);
 };

 this.click = function() {
 console.log("This in the Square's click method: ");
 console.log(this);
 this.numClicks++;
 document.getElementById("counter_" + this.id).innerHTML =
 "You've clicked " + this.numClicks + " times on " + this.name;
 };
 }

 function Circle(id, name, radius) {
 this.id = id;
 this.name = name;
 this.radius = radius;
 this.numClicks = 0;

 this.display = function() {
 var el = document.getElementById(this.id);
 el.style.width = (this.radius * 2) + "px";
 el.style.height = (this.radius * 2) + "px";
 el.style.borderRadius = this.radius + "px";
 el.innerHTML = "<p>" + this.name + "</p>";
 console.log(this.name + " has radius " + this.radius +
 ", and is a " + this.constructor.name);
 };
 this.click = function() {
 this.numClicks++;
 document.getElementById("counter_" + this.id).innerHTML =
 "You've clicked " + this.numClicks + " times on " + this.name;
 };
 }

 window.onload = function() {
 var square = new Square("s1", "square one", 100);
 setupClickHandler(square);
 square.display();

 var circle = new Circle("c1", "circle one", 50);
 setupClickHandler(circle);
 circle.display();
 }

 function setupClickHandler(shape) {
 var elDiv = document.getElementById(shape.id);
 elDiv.onclick = function() {
 shape.click();
 }
 }
</script>
</head>

<body>
 <div id="s1" class="square"></div>
 <div id="c1" class="circle"></div>
 <p id="counter_s1"></p>
 <p id="counter_c1"></p>
</body>
</html>

 and . A circle appears in the page with the name "circle one." You can click the square and
see the message "You've clicked 1 times on square one," and you can click the circle and see the message
"You've clicked 1 times on circle one." Repeated clicks on either object add to the click count in the
appropriate displayed sentence.

We added a new Circle() constructor that's similar to Square() , except that it has a radius, and its display()
function is different. The click() function is exactly the same though.

We also added new code in the windo w.o nlo ad function to create a circle object, call
set upClickHandler() to add a click handler to the "c1" <div> object representing the circle in the page, and to
call circle .display() so we see it in the page.

Each shape gets its own separate click handler. When we pass square to set upClickHandler() , we set the
click handler fo r the "s1" <div> object to the square's click() method, and when we pass circle to
set upClickHandler() , we set the click handler fo r the "c1" <div> object to the circle's click() method.

Because the code for both is exactly the same, we can pull the code out o f the two objects and use the same
code for both. Modify t his.ht ml again, as shown.

CODE TO TYPE:

...
 function Square(id, name, size) {
 this.id = id;
 this.name = name;
 this.size = size;
 this.numClicks = 0;

 this.display = function() {
 var el = document.getElementById(this.id);
 el.style.width = this.size + "px";
 el.style.height = this.size + "px";
 el.innerHTML = "<p>" + this.name + "</p>";
 console.log(this.name + " has size " + this.size +
 ", and is a " + this.constructor.name);
 };

 this.click = function() {
 this.numClicks++;
 document.getElementById("counter_" + this.id).innerHTML =
 "You've clicked " + this.numClicks + " times on " + this.name;
 };
 }

 function Circle(id, name, radius) {
 this.id = id;
 this.name = name;
 this.radius = radius;
 this.numClicks = 0;

 this.display = function() {
 var el = document.getElementById(this.id);
 el.style.width = (this.radius * 2) + "px";
 el.style.height = (this.radius * 2) + "px";
 el.style.borderRadius = this.radius + "px";
 el.innerHTML = "<p>" + this.name + "</p>";
 console.log(this.name + " has radius " + this.radius +
 ", and is a " + this.constructor.name);
 };
 this.click = function() {
 this.numClicks++;
 document.getElementById("counter_" + this.id).innerHTML =
 "You've clicked " + this.numClicks + " times on " + this.name;
 };
 }

 function click() {
 console.log("This in click function: ");
 console.log(this);
 this.numClicks++;
 document.getElementById("counter_" + this.id).innerHTML =
 "You've clicked " + this.numClicks + " times on " + this.name;
 }

 window.onload = function() {
 var square = new Square("s1", "square one", 100);
 setupClickHandler(square);
 square.display();

 var circle = new Circle("c1", "circle one", 50);
 setupClickHandler(circle);
 circle.display();
 }

 function setupClickHandler(shape) {
 var elDiv = document.getElementById(shape.id);
 elDiv.onclick = function() {

 shape.click();
 click.call(shape);
 }
 }
...

 Save and . Try clicking on both the square and the circle. You see messages in the page
showing how many times you've clicked on the respective shapes. In the conso le, you see the messages
displayed by the new click() function we just added, that show which shape you've just clicked on.

First, we removed the click() methods from each o f the shapes, and put the code into a new click() function.
The code is exactly the same, except that we added the two conso le messages at the top The code in the
click() method still refers to t his, and properties like t his.numClicks and t his.name , but if you call a
global function, t his is set to the window object. It shouldn't be set to either the square o r the circle though,
so what's go ing on?

This is where call() comes in handy. When we set up the click handler fo r the shapes, we made one small
change: we changed the code from shape.click() to click.call(shape) . So what's the difference? What does
call() do? Good questions!

click() is a function. We can call that function using the call() method (I'll explain where that method comes
from in a just a moment), and pass in the object that we want to use for t his, which in this case is the shape
object, which will be square when we've passed square to set upClickHandler, and circle when we've
passed circle to set upClickHandler. Calling the click() function using the call() method is just like calling
the function in the normal way (with click()), except that we get to choose how t his should be defined.

Inside click() , t his is set to either the square o r the circle , depending on which element we click on. If it's
set to square , we reference the square's numClicks property, and the square's name property. We do the
same for the circle .

call() is a method o f the click() function. As we've said previously, a function is an object with properties and
methods just like any o ther object. Whenever you define a function, like click() , you're actually creating an
instance o f the Funct io n object using the Funct io n() constructor (JavaScript does that fo r you behind the
scenes). Remember that an object can inherit methods and properties from its pro to type. In this case,
function's pro to type includes the method call() . You can check for yourself, like this (this session assumes
you've loaded the t his.ht ml file):

INTERACTIVE SESSION:

> click
function click() {
 console.log("This in click function: ");
 console.log(this);
 this.numClicks++;
 document.getElementById("counter_" + this.id).innerHTML =
 "You've clicked " + this.numClicks + " times on " + this.name;
 }
> click.call
function call() { [native code] }

First we ask to display the function click() , by typing the name of the function. Then we ask to see the click()
function's call property, which it inherits from its Funct io n pro to type, and which is implemented natively by
the browser (so you can't see the details).

call() and apply()

The methods call() and apply() do essentially the same thing, but you use them slightly differently. The first
argument o f both methods is the object you want to stand in fo r t his. If the function you're calling takes
arguments, then you also pass these arguments into both call() and apply() . For call() , you pass these
arguments as a list o f arguments (like you normally do with arguments), and for apply() , you pass all the
arguments in an array.

So, to use call() , you'd write:

OBSERVE:

function myFunction(param1, param2, param3) {
 ...
}
var anObject = { x: 1 };
myFunction.call(anObject, 1, 2, 3);

...and to use apply() , you'd write:

OBSERVE:

function myFunction(param1, param2, param3) {
 ...
}
var anObject = { x: 1 };
myFunction.apply(anObject, [1, 2, 3]);

In both o f these examples, the object anObject is defined as the value o f t his in the function myFunct io n() ,
and the arguments 1, 2, 3 are passed to myFunct io n() , and stored in the parameters param1, param2, and
param3.

As you've seen with our example o f using call() to call the click() function, the arguments are optional—if
your function doesn't expect arguments you don't have to supply any.

You can use call() and apply() on your own functions, as well as JavaScript's built- in functions. For
instance, let's say you have an array o f numbers and you want to find the maximum number in the array.
There is a handy Mat h.max() method available, but it doesn't take an array, it takes a list o f numbers:

INTERACTIVE SESSION:

> var myArray = [1, 2, 3];
undefined
> Math.max(myArray)
NaN
> Math.max(1, 2, 3)
3

However, we can use apply() to get around this, like this:

INTERACTIVE SESSION:

> Math.max.apply(null, myArray);
3

Notice that we pass null as the value to be used for t his (because we don't need any object to stand in fo r
this), and because we're using apply() , the values from the array are passed into the Mat h.max() method as
a list o f arguments.

Function Arguments

When you invoke a function, you pass arguments to the function's parameters. When the number o f
arguments is equal to the number o f parameters, each parameter gets a corresponding argument from the
function call. So, what happens if the number o f arguments doesn't match the number o f parameters?

Suppose you want to write your own max() function (similar to Mat h.max()). How would you do it? Well, you
could start simple:

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> max </title>
 <meta charset="utf-8">
 <script>
 function max(n1, n2) {
 if (n1 > n2) {
 return n1;
 }
 else {
 return n2;
 }
 }

 console.log(max(99, 101, 103));

 </script>
</head>
<body>
</body>
</html>

 Save this in your /AdvJS fo lder as max.ht ml, and . In the conso le, you see 101.

The argument 103 does get passed to the function, but since we don't give it a parameter name, and we don't
use it, it's not included in the calculation o f the maximum number.

If you pass too few arguments, then the parameter that's expecting an argument has the value undefined.
Let's see what happens if we pass only one argument to our max() function:

CODE TO TYPE:

function max(n1, n2) {
 console.log("n2 is " + n2);
 if (n1 > n2) {
 return n1;
 }
 else {
 return n2;
 }
}

console.log(max(99, 101, 103));

 and . In the conso le, you see that "n2 is undefined."

We'd like to write our max() function so that it can take any number o f arguments, like Mat h.max() , and find
the maximum value. To do that, we can use the argument s object. This object contains all the arguments
passed to a function. Let's rewrite our max() function to use it:

CODE TO TYPE:

function max(n1, n2) {
 console.log("n2 is " + n2);
 if (n1 > n2) {
 return n1;
 }
 else {
 return n2;
 }
 var max = Number.NEGATIVE_INFINITY;
 for (var i = 0; i < arguments.length; i++) {
 if (arguments[i] > max) {
 max = arguments[i];
 }
 }
 return max;
}

console.log(max(99, -55, 101, 103, 22));

 and . You see the result 103 in the conso le.

First notice that our max() function no longer specifies any parameters. That's because we're go ing to
access all the arguments with the argument s object.

The argument s object is an array- like object; you can iterate over it, and it has a length property, so we can
use it like an array to iterate over all o f the arguments and find the maximum value. To do that we initialize the
variable max to negative infinity, and then look at each argument to see if it's greater than max. Each time an
argument is greater than max, we update the value o f max, so the final result is the maximum value o f all the
arguments we passed into the object.

The Four Ways to Invoke a Function

You've seen examples o f each o f the four ways you can invoke a function:

as a function
as a method
as a constructor
with apply() o r call()

You'll likely use the first three most o ften, but there are times when the fourth (using apply() o r call()) can
come in handy too.

In general, the t his keyword is bound to the object that contains the function. For global functions, that's the
global window object; fo r constructors, that's the object being constructed; and for methods, that's the object
that contains the method you're calling.

Three big exceptions to this rule are: when you are in an event handler function on an event like "click"; when
you've explicitly changed the value defined for t his using call() o r apply() ; and when you are in a nested
function. Memorize the way t his behaves in these three cases so you don't get tripped up (not to mention
that having a grasp on this is a great way to ace those JavaScript interview questions)!

In this lesson, you learned about the four ways we can invoke functions in JavaScript, and what happens to t his in
each case. Take some time to practice invoking some functions before you move on to the next lesson, where we'll
look at invocation patterns: code designs that use function calls in some interesting ways.

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Invocation Patterns
Lesson Objectives

When you complete this lesson, you will be able to :

call a function recursively.
create an object so its methods can be chained.
call functions by chaining them together.
create a static method.
distinguish between static and instance methods.

Invocation Patterns
In this lesson, we take a look at some "invocation patterns": that is, ways to structure your function calls. These aren't
new ways to invoke functions, but rather code designs invo lving function calls that may be useful as you continue in
your JavaScript programming.

Recursion

Recursion is when you call a function from within that same function. It's a powerful programming too l, so it's
an important concept to master, but it can be tricky.

A recursive function can always be converted to an iteration, so we'll start by looking at an example o f
iteration and then rewrite the function using recursion instead.

We'll use code from a previous example using the Square() constructor to create squares in the page.
Create a new HTML file and copy in this code:

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> Recursion </title>
 <meta charset="utf-8">
 <style>
 .square {
 background-color: lightblue;
 cursor: pointer;
 }
 .square p {
 padding-top: 35%;
 text-align: center;
 -webkit-user-select: none;
 -moz-user-select: none;
 -ms-user-select: none;
 user-select: none;
 }
 </style>
 <script>
 function Square(id, size) {
 this.id = id;
 this.size = size;

 this.display = function() {
 var el = document.createElement("div");
 el.setAttribute("id", this.id);
 el.setAttribute("class", "square");
 el.style.width = this.size + "px";
 el.style.height = this.size + "px";
 el.innerHTML = "<p>" + this.id + "</p>";
 console.log(this.id + " has size " + this.size +
 ", and is a " + this.constructor.name);
 document.getElementById("squares").appendChild(el);
 };
 }

 function createSquares(n) {
 var size = 10;
 if (n == 0) {
 return;
 }
 while (n >= 1) {
 var s = new Square(("s" + n), n * size);
 s.display();
 n--;
 }
 }

 window.onload = function() {
 createSquares(7);
 };
 </script>
</head>
<body>
<div id="squares"></div>
</body>
</html>

 Save this in your /AdvJS fo lder as recursio n.ht ml, and . You see seven squares,
decreasing in size:

(The names o f the smallest squares don't fit into the <div>s properly; don't worry about that).

Take a look at the code:

OBSERVE:

function createSquares(n) {
 var size = 10;
 if (n == 0) {
 return;
 }
 while (n >= 1) {
 var s = new Square(("s" + n), n * size);
 s.display();
 n--;
 }
}

We use a function, creat eSquares() , to create a given number o f squares. In a lo o p, we invoke the
Square() constructor, and then display the resulting square object by calling its display() method.

The display() method creates a new <div> object representing the square, and appends it to the "squares"
<div> in the page.

To create the correct number o f squares, we use a while lo o p to iterate the number, n, passed into
creat eSquares() . We also use n to compute the size o f the square to add to the page (using n * size, where
size is 10), and include it as part o f the name of each square (fo r example, s3).

We can rewrite this function using recursion by replacing the while loop with a call to the function
creat eSquares() :

CODE TO TYPE:

...
 function createSquares(n) {
 var size = 10;
 if (n == 0) {
 return;
 }
 while (n >= 1) {
 var s = new Square(("s" + n), n * size);
 s.display();
 n--;
 }
 var s = new Square(("s" + n), n * size);
 s.display();
 createSquares(n-1);
 }
...

 and . You see the same seven squares in decreasing sizes.

Let's compare the resursive version to the version with the iteration to see how that works:

OBSERVE:

while (n >= 1) {
 var s = new Square(("s" + n), n * size);
 s.display();
 n--;
}

Here we it erat e through all o f the values o f n until n is equal to 1. When we pass 7 to the function
creat eSquares() , the first time through the iteration, n is 7, we get a square o f size 70 (using n * size , which
is 7 * 10), then reduce n by one, and keep looping until n is 1.

OBSERVE:

var s = new Square(("s" + n), n * size);
s.display();
createSquares(n-1);

The recursive version does essentially the same thing, except that we call creat eSquares() each time we
want a square o f a smaller size.

The first time we call creat eSquares() , n is 7, so we create and display a square o f size 70. Then we call
creat eSquares() again, only we pass n - 1 as the argument to the function. So in this call to
creat eSquares() , n is 6 . We create and display a square o f size 60, and call creat eSquares() again, with
the argument 5, and so on.

When n is 1, we execute the code that creates and displays a square o f size 10. Then we call
creat eSquares() and pass the value 0 for n. Now, instead o f executing the code to create a square o f size
0, we check and see that n is 0 and return:

OBSERVE:

if (n == 0) {
 return;
}

This if statement is known as the base case and it's vitally important because without it, the recursion will

continue forever—try it. Comment out the if block, , and . It's just like with iteration: you must
supply a conditional test to tell the iteration when to stop. In recursion, the base case tells the recursion when
to stop. We want the recursion to stop when n is 0 . So in this case, we do not call creat eSquares() again,
which causes the recursion to stop.

The results o f both o f these versions o f creat eSquares() are exactly the same, but the first uses iteration
and the second uses recursion. Again, recursion can always be replaced with iteration.

Why Use Recursion?

Some algorithms are naturally recursive. For instance, the algorithm to compute the factorial o f a number n is
recursive. To compute the factorial o f a number, say 5, we multiply 5 times the factorial o f that number minus
1:

OBSERVE:

The factorial of 5 is 5 * the factorial of 4.
The factorial of 4 is 4 * the factorial of 3.
The factorial of 3 is 3 * the factorial of 2.
The factorial of 2 is 2 * the factorial of 1.
The factorial of 1 is 1.
So the factorial of 5 is 5 * 4 * 3 * 2 * 1, which is 120.

Writing this in pseudocode, you can think o f this as recursively designed code:

OBSERVE:

factorial(5) = 5 * factorial(4)
factorial(4) = 4 * factorial(3)
factorial(3) = 3 * factorial(2)
factorial(2) = 2 * factorial(1)
factorial(1) = 1

We are using the factorial function in the definition o f the factorial function. That's the very definition o f
"recursive." It's like we are using the question in the answer to the question: what is factorial o f 5? It's 5 times
the factorial o f 4!

Of course, that can be frustrating unless you have an answer to the question that doesn't invo lve the question
itself. That's the reason for the base case. The base case for the factorial algorithm is 1; when n is 1, we don't
call factorial again. That means you can finally stop asking the question and start getting answers. You can

plug in the value 1 for the answer to "What is the factorial o f 1?" then you can then answer the question, "What
is the factorial o f 2?" and so on until you get to the answer for your original question, "What is the factorial o f
5?"

Every recursive algorithm works this way: you create a pile o f function calls, each with so lutions that invo lve
calling that function again, until you get to the base case. Then you can start unravelling the pile until you get
back to your original function call. (See if you can implement f act o rial() in JavaScript—it'll be one o f the
pro jects!)

Many algorithms for which you may want to create functions are naturally recursive. These naturally recursive
functions tend to be easier to read when they are expressed recursively, rather than when they are expressed
iteratively (using loops).

However, there's a downside to recursion. Each time you call a function, you add that function to the call
stack; this takes up memory. Iteration takes up memory too, but usually not as much as a pile o f functions on
a call stack. To see the call stack created by recursive calls, we can use the Chrome browser too ls and add a
breakpo int to the code on the line in creat eSquares() where we call creat eSquares() recursively:

Then we reload the page, and execution stops each time we call creat eSquares() recursively. Execute the
breakpo int a few times by clicking the Resume script execut io n button, and you can see the function being
added to the call stack each time we call it:

Take a look at the scope variables each time you click the Resume script execut io n button; the value o f n
decreases by one each time. Eventually, n gets to 0 , the recursion stops, and the code completes.

This happens because we're calling creat eSquares() from inside creat eSquares() before the previous
invocation o f creat eSquares() is complete. To compare, let's say you have a function add() (that's not
recursive), and you call that function three times:

OBSERVE:

function add(num1, num2) {
 return num1 + num2;
}
add(1, 2);
add(2, 3);
add(3, 4);

The add() function goes on to the call stack three times. However, you only have one invocation o f add() on
the call stack at a time, because each invocation o f add() ends before the next one begins, so the call stack
never gets bigger than one function.

Now think about creat eSquares() again. We call creat eSquares() before the previous call to
creat eSquares() has completed. So we call creat eSquares(7) , and while that function invocation is still
on the stack, we call creat eSquares(6) . This function invocation goes on top o f the invocation to
creat eSquares(7) , so we have two function invocations on the stack. Then we do it again with
creat eSquares(5) , and so on until we call creat eSquares(0) .

When we call creat eSquares(0) , creat eSquares(0) gets added to the top o f the stack, but
creat eSquares(0) just returns, so it gets popped o ff the stack right away. When creat eSquares(0) returns,
then creat eSquares(1) can finish executing and then get popped o ff the stack. Once that's done,
creat eSquares(2) can finish executing and get popped o ff the stack, and so on, until finally,
creat eSquares(7) finishes and gets popped o ff the stack and you're done.

Here's how the call stack gets built up as each recursive call to creat eSquares() takes place. Then the
function invocations are removed from the stack once we reach the base case and each function call can
finish:

This pile o f function invocations that's created on the call stack when you call a function recursively isn't a big
deal if your functions are small (and don't have too many variables in each activation object), and if the
number o f times the function is called recursively (so the number o f invocations that goes on the stack) is
small. If your functions are large though and have lo ts o f variables and/or the function is called recursively
many times, then your code will take up a lo t o f memory. In addition, your browser will limit the number o f
functions it allows on the call stack at once.

Most o f the time, you'll have functions with few local variables, so you won't call your recursive functions so
often that it becomes problematic. So now you know what to look out fo r if you run into memory issues while
using a recursive design.

Chaining (a la jQuery)

Another invocation pattern you'll see in JavaScript is method chaining. Chaining is common in some
JavaScript libraries, like jQuery. The technique allows you to write multiple method calls on the same object in
a chain. For instance, instead o f writing:

OBSERVE:

obj.method1();
obj.method2();
obj.method3();

...you can write:

OBSERVE:

obj.method1().method2().method3();

For method chaining to work, each method must return an object so that the next method can be called on
that object. In the example above, if o bj.met ho d1() retuns o bj, that object is used to call met ho d2()
immediately.

Let's take a look at a concrete example. We'll use the same Squares example from earlier, and modify it a bit.
Save recursio n.ht ml to a new file in your /AdvJS fo lder named chaining.ht ml, and make these changes:

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> Chaining </title>
 <meta charset="utf-8">
 <style>
 .square {
 background-color: lightblue;
 cursor: pointer;
 }
 .square p {
 padding-top: 35%;
 text-align: center;
 -webkit-user-select: none;
 -moz-user-select: none;
 -ms-user-select: none;
 user-select: none;
 }
 </style>
 <script>
 function Square(id, size) {
 this.id = id;
 this.size = size;
 this.el = null;

 this.bigger = function(size) {
 if (this.el) {
 this.size += size;
 this.el.style.width = this.size + "px";
 this.el.style.height = this.size + "px";
 return this;
 }
 };

 this.color = function(color) {
 if (this.el) {
 this.el.style.backgroundColor = color;
 return this;
 }
 };

 this.display = function() {
 var this.el = document.createElement("div");
 this.el.setAttribute("id", this.id);
 this.el.setAttribute("class", "square");
 this.el.style.width = this.size + "px";
 this.el.style.height = this.size + "px";
 this.el.innerHTML = "<p>" + this.id + "</p>";
 console.log(this.id + " has size " + this.size +
 ", and is a " + this.constructor.name);
 document.getElementById("squares").appendChild(this.el);
 return this;
 };
 }

 function createSquares(n) {
 var size = 10;
 if (n == 0) {
 return;
 }
 var s = new Square(("s" + n), n * size);
 s.display();
 createSquares(n-1);
 }

 window.onload = function() {

 createSquares(7);

 var mySquare = new Square("mySquare", 100);
 mySquare.display().color("green");
 mySquare.el.onclick = function() {
 mySquare.bigger(50).color("red");
 };
 };
 </script>
</head>
<body>
<div id="squares"></div>
</body>
</html>

 Save and . You see a green square with the name "mySquare." Click on the square. The
square gets bigger and turns red. Each time you click on the square it gets bigger.

In our code, we made a modification to the display() method: now that method stores the <div> element
we're creating for the square in the Square object, in the property el. Now we can use that <div> element in
the two new methods we've added: bigger() and co lo r() . bigger() takes a value and adds it to the size o f
the square, then modifies the style o f the <div> representing the square to change the size o f the <div> (which
makes the square appear bigger). Similarly, co lo r() takes a co lor string (like "blue," "green," or "red"), and
modifies the style o f the <div> to change the background to that co lor.

We've also added a line to each method to return t his. For example:

OBSERVE:

this.color = function(color) {
 if (this.el) {
 this.el.style.backgroundColor = color;
 return this;
 }
};

Each o f the Square 's three methods now returns t his, so when we call mySquare.display() , we get
mySquare back as a result. That means we can call one o f the o ther methods on the resulting object
immediately, like co lo r() o r bigger() . We can chain these methods together!\.

In fact, that's exactly what we do in the code after we create mySquare :

OBSERVE:

mySquare.display().color("green");
mySquare.el.onclick = function() {
 mySquare.bigger(50).color("red");
};

After creating the mySquare object, we call t he display() met ho d to create and display the <div> object in
the page, and then chain a call t o t he co lo r() met ho d to turn the square green. Also, we set up a click
handler on the <div> so that when you click on the square, we call two methods on the square, bigger() and
co lo r(), again chained, so that co lo r() is called on the object that is returned by bigger() .

Usually when you chain methods, you call methods on the same object fo r each part o f the chain. It's certainly
possible to have one o f the methods return a different object fo r the next method to be called on, but code
written that way would be much more difficult to understand, so in general, it's not recommended. When you
create method chains, you generally want to make sure you act on the same object in each part o f the chain.

Potential benefits o f chaining are that it can make code easier to read, and reduce the number o f lines o f code.
However, chains that are too long can be difficult to understand as well, so use chaining judiciously. (Chains
that are too long are o ften called train wrecks!)

Static vs. Instance Methods

One last invocation pattern we'll look at in this lesson is how to call static methods, and the differences

between static and instance methods.

Let's begin by exploring the Dat e() constructor. You can use Dat e() to create new date objects, like this:

INTERACTIVE SESSION:

> var nowDate = new Date()
undefined
> nowDate.toString()
"Thu Sep 05 2013 10:17:39 GMT-0700 (PDT)"
> nowDate.getMonth()
8
> nowDate.getTime()
1378401459465

Here, we created a new date object, no wDat e , by calling the Dat e() constructor function. If you pass no
arguments to the constructor, this function creates an object fo r the current date and time, so the result is a
date object that represents "right now," which (as o f the writing this lesson) is Thursday, September 5, 2013 at
10:17am.

The date object no wDat e has various methods and properties you can use just like any o ther object. For
instance, you can use the method no wDat e.t o St ring() to get a string representing the current date and
time, and get the month with no wDat e.get Mo nt h() (note that the returned numeric value is from an array
whose indices start at zero , so September is represented by 8). You can get the number representing the date
and time using the get T ime() method.

Now try this:

INTERACTIVE SESSION:

> var time = Date.now()
undefined
> time
1378401746077

We called a method no w() on the Dat e object. Dat e and Dat e() are the same object: they are both the
Dat e() constructor function. Remember that functions are objects—and objects can have properties though.
The method no w() is a method o f the Dat e() function object.

Notice that the result, t ime , is a variable that contains a number representing the current time. It's different
from the variable no wDat e though. no wDat e is a Dat e object, whereas t ime is simply a number:

INTERACTIVE SESSION:

> nowDate instanceof Date
true
> time instanceof Date
false

You can use t ime to create a Dat e object, like this:

INTERACTIVE SESSION:

> var anotherDate = new Date(time);
undefined
> anotherDate
Thu Sep 05 2013 10:22:26 GMT-0700 (PDT)
> anotherDate.getTime()
1378401746077

Once you have the ano t herDat e object, you can use the method get T ime() to get the number representing
the date and time back (it's the same number as in the variable t ime that we used to create the object in the
first place).

So, what's the difference between creating a date object using a constructor and then calling methods on that
date object, and calling a method directly on the function object itself? And how do you add methods directly
to a function anyway?

We'll answer those questions by adding a method to the Square() constructor we've been working with in
this lesson. Modify your JavaScript code in chaining.ht ml as shown:

CODE TO TYPE:

 function Square(id, size) {
 this.id = id;
 this.size = size;
 this.el = null;

 this.bigger = function(size) {
 if (this.el) {
 this.size += size;
 this.el.style.width = this.size + "px";
 this.el.style.height = this.size + "px";
 return this;
 }
 };

 this.color = function(color) {
 if (this.el) {
 this.el.style.backgroundColor = color;
 return this;
 }
 };

 this.display = function() {
 this.el = document.createElement("div");
 this.el.setAttribute("id", this.id);
 this.el.setAttribute("class", "square");
 this.el.style.width = this.size + "px";
 this.el.style.height = this.size + "px";
 this.el.innerHTML = "<p>" + this.id + "</p>"
 console.log(this.id + " has size " + this.size +
 ", and is a " + this.constructor.name);
 document.getElementById("squares").appendChild(this.el);
 return this;
 };
 }

 Square.info = function() {
 return "Square is a constructor for making square objects with an id and
 size.";
 };

 window.onload = function() {
 var mySquare = new Square("mySquare", 100);
 mySquare.display().color("green");
 mySquare.el.onclick = function() {
 mySquare.bigger(50).color("red");
 };

 var info = Square.info();
 console.log(info);
 };

 and . In the conso le, the message, "Square is a constructor fo r making square objects with
an id and size." is displayed.

We're working with two different kinds o f objects here. First, we use the Square() constructor to create new
objects by calling Square() with new:

OBSERVE:

var mySquare = new Square("mySquare", 100);

In this case, the object mySquare is called an instance o f Square : it's an object created by the constructor,
an object that has the properties and methods we specify in the constructor by saying
t his.PROPERT YNAME = SOME VALUE. Methods like bigger() , co lo r() , and display() are called instance
methods, because they are methods o f the object instances created by calling Square() with new.

The o ther object we're working with is the Square object. This object happens to be a function, but it's like
other objects in that it has methods and properties. Also, just like any o ther object, we can add a new property
or method to it:

OBSERVE:

Square.info = function() {
 return "Square is a constructor for making square objects with an id and siz
e.";
};

In this case, we're adding a method o f the Square object, not a method o f the mySquare instance object we
created using Square() as a constructor. We call methods like this static methods: they are methods o f the
constructor function object. We say they are "static" because, unlike instance methods that may return
different values depending on the properties o f the specific instance you're working with (fo r example, one
square might have size 10 and co lor red, while another might have size 200 and the co lor green), static
methods don't vary based on those differences. Static methods are methods o f the constructor, not methods
of the instances.

We can't access static methods from object instances, just like we can't access instance methods from the
constructor object. Let's test this:

CODE TO TYPE:

 window.onload = function() {
 var mySquare = new Square("mySquare", 100);
 mySquare.display().color("green");
 mySquare.el.onclick = function() {
 mySquare.bigger(50).color("red");
 };

 var info = Square.info();
 console.log(info);

 mySquare.info();
 }

 and . In the conso le, you see the error:

OBSERVE:

Uncaught TypeError: Object #<Square> has no method 'info'

Here, we try to call a static method, inf o () , from an object instance. It doesn't work.

Try this:

CODE TO TYPE:

 window.onload = function() {
 var mySquare = new Square("mySquare", 100);
 mySquare.display().color("green");
 mySquare.el.onclick = function() {
 mySquare.bigger(50).color("red");
 };

 var info = Square.info();
 console.log(info);

 mySquare.info();
 Square.color("red");
 };

 and . In the conso le, you see another error message:

OBSERVE:

Uncaught TypeError: Object function Square(id, size) {
 ...
} has no method 'color'

Here, we try to access an instance method from the Square object, and again, it won't work.

Let's go back to the Dat e object. When we created a new date object, no wDat e , then called methods on that
object, like get Mo nt h() and get T ime() , we used instance methods: methods defined in the instance objects
we create by calling the Dat e() constructor function with new. When we called Dat e.no w() , we used a static
method: a method defined in the Dat e function object itself.

So, when should a method be an instance method, and when should a method be a static method?

Well, object instances are used to represent specific items, like a square object with a specific size, or a date
object with a specific date and time. So it makes sense to have methods like get Mo nt h() and
get FullYear() fo r a date object instance, because that object has specific values for the month and the year,
the values you gave it when you created the object using the constructor with new.

The constructor function, Dat e() doesn't represent a specific date or time. So asking the Dat e object fo r a
month, fo r instance:

OBSERVE:

Date.getMonth()

...makes no sense. Dat e doesn't represent any particular date until you create a specific instance. However,
the Dat e object can have useful properties and methods that aren't related to a specific date you're creating.
The no w() method is one o f those useful methods: it generates a number that represents the date and time
of "right now." There is no need to create a new date object instance to get that number.

Similarly, the Square.inf o () method provides information about the Square constructor function that is not
related to any specific instance o f a square. Meanwhile, methods like co lo r() and display() are only relevant
for a specific instance o f a square, one that has a size and an element associated with it that can be assigned
a co lor.

So, in a sense, invoking static methods and instance methods are the same. A static method is invoked on
the object in which it is defined (the constructor function) and an instance method is invoked on the object in
which it's defined as well (the instance object created by calling the constructor function). The trick is to keep
track o f which object is which.

Further, we don't just use static and instance to describe methods; we can also use these terms to describe
other properties o f objects. So, in our Squares example, we say the property size is an instance variable o f a
square object. You could add a static variable, say, reco mmendedSize , to the Square() constructor, like
this:

OBSERVE:

Square.recommendedSize = 100;

To access the variable from the inf o () method, you'd write:

OBSERVE:

Square.info = function() {
 return "Square is a constructor for making square objects with an id and siz
e. " +
 "The recommended size for a square is " + Square.recommendedSize + ".
";
};

In this lesson, we talked about three invocation patterns that you'll see used frequently in JavaScript: recursion, chaining, and
static methods. There are o ther invocation patterns, o f course, which you may encounter as you continue your JavaScript
studies and get more programming experience. In upcoming lessons we'll explore the Module Pattern, but fo r now, do the quiz
and the pro ject, then take a break. When you're rested, continue on!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Encapsulation and APIs
Lesson Objectives

When you complete this lesson, you will be able to :

create private properties and methods in an object.
create a public interface to use the object.

Encapsulation and APIs
One of the benefits o f objects in an object-oriented language is encapuslation: the ability to compartmentalize
properties and behaviors in an object, and provide an interface so the rest o f your program doesn't have to worry
about how certain behaviors are implemented. The object just works. Think o f o ther objects you use in JavaScript, like
JSON or Date or Math. These objects all have properties and methods that work; you don't need to worry about the
inner workings. Sometimes you might want to hide the internal operation o f your properties and methods, so
programs don't depend on any particular implementation. In this lesson, we'll learn how to use objects and functions
to encapsulate structure and behavior, and how to use information hiding techniques to pro tect implementation details.

Privacy, Please

In the previous lesson, we used a Square() constructor to create square objects and display them in a web
page. In that example, we created some properties and methods to give a new square object an id, a size,
and a <div> element to represent the square object in the web page:

OBSERVE:

 function Square(id, size) {
 this.id = id;
 this.size = size;
 this.el = null;

 this.bigger = function(size) {
 if (this.el) {
 this.size += size;
 this.el.style.width = this.size + "px";
 this.el.style.height = this.size + "px";
 return this;
 }
 };

 this.color = function(color) {
 if (this.el) {
 this.el.style.backgroundColor = color;
 return this;
 }
 };

 this.display = function() {
 this.el = document.createElement("div");
 this.el.setAttribute("id", this.id);
 this.el.setAttribute("class", "square");
 this.el.style.width = this.size + "px";
 this.el.style.height = this.size + "px";
 this.el.innerHTML = "<p>" + this.id + "</p>";
 console.log(this.id + " has size " + this.size +
 ", and is a " + this.constructor.name);
 document.getElementById("squares").appendChild(this.el);
 return this;
 };
 }

 window.onload = function() {
 var mySquare = new Square("mySquare", 100);
 mySquare.display().color("green");
 mySquare.el.onclick = function() {
 mySquare.bigger(50).color("red");
 };
 };

All o f the values in a square object are either properties or methods, which means we could change them at
any time. For instance, you could write:

OBSERVE:

mySquare.size = 200;

...and that would change the size property o f the mySquare object, but the square in the web page wouldn't
get any bigger.

Just changing the size property o f a square doesn't affect the <div> element (stored in the el property) at all.
Unless you call the bigger() method o f a square, no changes will be made to the size o f the <div> in the
page.

You could also do this:

OBSERVE:

mySquare.el = document.createElement("p");

...because if the element that represents the square isn't set up correctly (by calling the display() method), the

square won't appear in the page.

Now, you probably wouldn't make these mistakes, but if you give your Square code to a friend, and your
friend doesn't quite understand how to use it correctly, all kinds o f things could go wrong.

So developers like to create objects that protect an object's inner workings, and provide a simple interface fo r
o ther developers to use to manipulate the object. An interface is a public view o f an object that hides its inner
workings, but lets the person using the object work with it.

For instance, we might want to allow someone to create a square, but rather than contro lling the display o f the
square, have the square handle that privately so that a square is only displayed once. (Right now, you could
call display() twice.) We might want to pro tect the el property so that no one can change it. We might want to
contro l the co lor and the amount by which a square grows each time internally within the square object, and
only allow the user o f a square object to "grow" the square.

An Example

That's pretty abstract, so let's take a look at an example. We'll modify our Squares example, but start from
scratch with a new file. Go ahead and create a new file and add this code:

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> Squares with API </title>
 <meta charset="utf-8">
 <style>
 .square {
 background-color: lightblue;
 cursor: pointer;
 }
 .square p {
 padding-top: 35%;
 text-align: center;
 -webkit-user-select: none;
 -moz-user-select: none;
 -ms-user-select: none;
 user-select: none;
 }
 </style>
 <script>
 function Square(size) {
 var initialSize = size;
 var el = null;
 var id = getNextId();

 this.grow = function() {
 setBigger(10);
 setColor("red");
 };

 var self = this;
 display();

 function setBigger(growBy) {
 if (el) {
 size += growBy;
 el.style.width = size + "px";
 el.style.height = size + "px";
 }
 }

 function setColor(color) {
 if (el) {
 el.style.backgroundColor = color;
 }
 }

 function display() {
 el = document.createElement("div");
 el.setAttribute("id", id);
 el.setAttribute("class", "square");
 el.style.width = size + "px";
 el.style.height = size + "px";
 el.innerHTML = "<p>" + id + "</p>";
 el.onclick = self.grow;
 document.getElementById("squares").appendChild(el);
 }

 function getNextId() {
 var squares = document.querySelectorAll(".square");
 if (squares) {
 return squares.length;
 }
 return 0;
 }

 }

 window.onload = function() {
 var square1 = new Square(100);
 var square2 = new Square(200);

 var growButton = document.getElementById("growButton");
 growButton.onclick = function() {
 square1.grow();
 square2.grow();
 };

 };
 </script>
</head>
<body>
<form>
 <input type="button" id="growButton" value="Grow">
</form>
<div id="squares"></div>
</body>
</html>

 Save this in your /AdvJS fo lder as squaresAPI.ht ml, and . When you click on a square, that
square grows; when you click on the Gro w button, both squares grow.

Let's take a closer look at the code.

OBSERVE:

 function Square(size) {
 var initialSize = size;
 var el = null;
 var id = getNextId();

 this.grow = function() {
 setBigger(10);
 setColor("red");
 };

 ...

 window.onload = function() {
 var square1 = new Square(100);
 var square2 = new Square(200);

 var growButton = document.getElementById("growButton");
 growButton.onclick = function() {
 square1.grow();
 square2.grow();
 };

 };

First, no tice that we now have only one public property in the Square() constructor: a method gro w() . What
do we mean by "public" here? Well, think back to how constructors work. When you call a function like
Square() with new, the constructor creates a new object instance with any properties and methods you add
to it using t his in the constructor. In this example, we add only one property to the object being created by the
Square() constructor: the gro w() method. So, that's the only property the resulting object will contain.

So what happens to all that o ther stuff after the object's created? How can we use the variables and the
functions in the square object if they go away after the Square() constructor has finished executing?

Those are really great question. We'll answer them in detail in the next lesson. The short answer is: a closure.
Some of the o ther "stuff" in the constructor is accessible after Square() is complete and has returned a new
square object because it's saved in a closure. Don't worry about that now; just keep it in the back o f your

mind, and know that the variables and functions encapsulated with the object are available even after the
constructor has completed.

Private Variables

All the values that we created as properties before are now variables:

OBSERVE:

function Square(size) {
 var initialSize = size;
 var el = null;
 var id = getNextId();

 ...
}

These variables are private. You can't access them by writing something like:

OBSERVE:

square1.id

...in your code that creates the square objects. Try it. See what happens if you try to access one o f these
variables.

CODE TO TYPE: Update your code in squaresAPI.html to add the fo llowing JavaScript code

...
 window.onload = function() {
 var square1 = new Square(100);
 var square2 = new Square(200);

 console.log(square1.id);

 var growButton = document.getElementById("growButton");
 growButton.onclick = function() {
 square1.grow();
 square2.grow();
 };

 };

 and and check the conso le: "undefined." square1 doesn't have an id property, so the value
of square1.id is undefined.

Once you've tested this code, go ahead and remove the line you added.

These variables are now accessible only inside the constructor function. They are not accessible by users o f
the square objects, so we say they are private. We use the init ialSize variable to keep track o f the initial size
of the square (we can change the size o f the square using t his.gro w() , so we might want to know what the
original size was in case we need it later). We'll use the el variable to ho ld the <div> element (once we create
it in the display() function) and id to ho ld a unique id fo r the square, which we'll generate using get Next Id() .

Private Functions

The Square() constructor doesn't take an id (unlike the version in the previous lesson); instead, we generate
an id in the constructor based on how many squares are in the page already. We use a nested function,
get Next Id() , to generate the next id. Let's examine this function more closely:

OBSERVE:

function Square(size) {
 var initialSize = size;
 var el = null;
 var id = getNextId();

 ...

 function getNextId() {
 var squares = document.querySelectorAll(".square");
 if (squares) {
 return squares.length;
 }
 return 0;
 }
};

To set the value o f the id variable to the next id (that is, a number that is no longer being used as an id by any
of the existing squares), we call get Next Id() . This function first get s all t he exist ing e lement s wit h t he
class "square" from the HTML page using do cument .querySelect o rAll() , which then returns an array o f
elements (if any exist). If we have no squares yet, the array will be empty, and so the length is 0 , and the next
id should be 0 . Similarly, if we have one square in the page, then the length o f the array is 1, and the next id
should be 1, and so on.

Again, note that the function get Next Id() is not accessible to code that creates and uses square objects.
This nested function is private and can be accessed only within the constructor function.

We set the id o f the square as it's being created when the constructor function runs, and we don't need
get Next Id() at all after the object has been created.

A Public Method

So far, the variables (init ialSize , el, and id), and the function (get Next Id()) that we've looked at have all
been private. The next function, gro w() , is a public method o f the object. That means that the method is added
to the object created by the constructor, and that the code that creates and uses the square object can call the
method.

OBSERVE:

function Square(size) {
 var initialSize = size;
 var el = null;
 var id = getNextId();

 this.grow = function() {
 setBigger(10);
 setColor("red");
 };

 ...

 function getNextId() {
 var squares = document.querySelectorAll(".square");
 if (squares) {
 return squares.length;
 }
 return 0;
 }
}

This method is the public interface o f the square object that is exposed to the rest o f the code. You can use it
to interact with a square object after it's been created. In order to make a square get bigger, call the gro w()
method. The details are handled by the square object.

The gro w() method calls two o ther private functions: set Bigger() and set Co lo r() . Both these functions are
nested in the constructor, so they are accessible to the gro w() method, but not accessible to any code

outside o f a square object. You can't call square1.set Bigger(10) to make a square bigger; you must call
square1.gro w() instead.

OBSERVE:

function Square(size) {
 var initialSize = size;
 var el = null;
 var id = getNextId();

 this.grow = function() {
 setBigger(10);
 setColor("red");
 };

 ...

 function setBigger(growBy) {
 if (el) {
 size += growBy;
 el.style.width = size + "px";
 el.style.height = size + "px";
 }
 }

 function setColor(color) {
 if (el) {
 el.style.backgroundColor = color;
 }
 }

 ...

 function getNextId() {
 var squares = document.querySelectorAll(".square");
 if (squares) {
 return squares.length;
 }
 return 0;
 }
}

Both set Bigger() and set Co lo r() check to make sure that t he e l variable has been init ialized
co rrect ly (which we'll do in the display() function), and then modify the style o f the <div> element to grow
the square and make sure it's got the right co lor, red.

Notice that we call two private functions from a public method. Even though the square objects created by the
constructor have only one property, the method gro w() (because o f the closure we mentioned earlier) has
access to the set Bigger() and set Co lo r() functions.

Also notice that the functions set Bigger() and set Co lo r() have access to the private variable, el (also
because o f the closure). So we can manipulate the value o f a private variable by calling a public method. But
we can't manipulate that private variable from outside the object. That gives you (as the creator o f this
Square() constructor, and the square objects that are made from it) greater contro l over how those objects
are used.

Acessing a Public Method from a Private Function

At this po int, we've initialized our three private variables, and defined a public method, gro w() . Now, we need
to create the <div> element that will represent the square in the page.

To do that, we'll call the display() function. This is a nested function that first creates a new <div> element fo r
the square, and then sets various properties to make the square the correct size and co lor.

We also set up the click handler fo r the <div> in this function. When you click on a <div> for a square, we want
the square to grow, so we call the gro w() method o f the square object we're using. You might think we could
write the display() function like this:

OBSERVE:

function display() {
 el = document.createElement("div");
 el.setAttribute("id", id);
 el.setAttribute("class", "square");
 el.style.width = size + "px";
 el.style.height = size + "px";
 el.innerHTML = "<p>" + id + "</p>";
 el.onclick = this.grow;
 document.getElementById("squares").appendChild(el);
}

However, when you call a nested function inside an object, t his is set to the global window object, not the
object the function is in. So, how do we refer to "this" object from inside the display() method?

We save the value o f t his in another variable, self (you can call this variable whatever you want, but by
convention it's usually called self o r t hat . It's a good idea to stick with this convention to make it easier fo r
o ther programmers to understand your code). Once we've saved the value o f t his in self , we can call
display() , and now display() can refer to the object's gro w() method using self .gro w:

OBSERVE:

function Square(size) {
 var initialSize = size;
 var el = null;
 var id = getNextId();

 this.grow = function() {
 setBigger(10);
 setColor("red");
 };

 var self = this;
 display();

 function setBigger(growBy) {
 if (el) {
 size += growBy;
 el.style.width = size + "px";
 el.style.height = size + "px";
 }
 }

 function setColor(color) {
 if (el) {
 el.style.backgroundColor = color;
 }
 }

 function display() {
 el = document.createElement("div");
 el.setAttribute("id", id);
 el.setAttribute("class", "square");
 el.style.width = size + "px";
 el.style.height = size + "px";
 el.innerHTML = "<p>" + id + "</p>";
 el.onclick = self.grow;
 document.getElementById("squares").appendChild(el);
 }

 function getNextId() {
 var squares = document.querySelectorAll(".square");
 if (squares) {
 return squares.length;
 }
 return 0;
 }
}

When you click on a square, the gro w() method is called on the object stored in self , which is the square
object that was created when you assigned the value o f self to t his. self is a private variable, and like the
other private variables and methods, it is accessible internally to the square object, even though it's not
accessible by the code using the square object.

Let's examine the contents o f the square objects we create in the windo w.o nlo ad function by adding a
couple o f co nso le.lo g()s to the code:

CODE TO TYPE: Update your JavaScript code in squaresAPI.html:

window.onload = function() {
 var square1 = new Square(100);
 var square2 = new Square(200);

 console.log(square1);
 console.log(square2);

 var growButton = document.getElementById("growButton");
 growButton.onclick = function() {
 square1.grow();
 square2.grow();
 };

};

 and . In the conso le, the two square objects are displayed (Chrome browser):

You can see that the only property (that we added) in each square object is the gro w() method.

Clicking on a square causes that square to grow, because we call the gro w() method o f the square on which
you click.

The call to the square's gro w() method is set up in the display() method, but the method isn't called until you
actually click on a square. In order to allow you to see more explicitly that you can call the gro w() method o f a
square using the square1 and square2 objects, we set up a form with one button, Gro w, that calls the
gro w() method on both square objects:

OBSERVE:

window.onload = function() {
 var square1 = new Square(100);
 var square2 = new Square(200);

 var growButton = document.getElementById("growButton");
 growButton.onclick = function() {
 square1.grow();
 square2.grow();
 };

};

First, we get t he but t o n e lement f ro m t he page , and add a click handler f unct io n t o t he but t o n.
The click handler calls t he gro w() met ho d o f bo t h square1 and square2. Because gro w() is a public
method, that is, a property o f the object we are creating with the constructor, this method is accessible to code
outside the object.

Encapsulation and APIs

So, a square object has a lo t o f internal components that are not accessible to the "outside world." These are
all the private variables and functions we've defined in the Square() constructor.

The one public method, gro w() , that a square has is its interface: the po int o f interaction between the square
and the rest o f the code. The only method you're allowed to call from outside the square is gro w() . We call
this interface an Application Programming Interface, o r API fo r short. When you see the term API used in
software systems, it refers to the set o f properties and methods that determine how software components
should interact with each o ther.

We encapsulated all the private things we don't want code outside a square to be able to interact with: the id,
the element object representing the square, the initial size, and the functions used to create and manipulate
the square. These private properties are not in the API; they're hidden and pro tected so they can't be used
outside the square objects.

Encapsulation is a language mechanism for restricting access to an object's components. In some
languages, like Java, we have keywords that specify which pieces o f an object are private or public. In
JavaScript, we don't have keywords to help us do this, but we can accomplish encapsulation by making
variables and functions private to an object using the technique we've covered in this lesson. We sometimes
refer to this technique as information hiding, because we're hiding the details o f how an object is implemented
to pro tect it from being used in the wrong way.

The advantage to encapsulation and providing an API to an object like a square is that it prevents code that is
using the square from setting the internal state o f the object to an invalid state. We are unable to modify the id
of the square, or the element that represents the square in the page—both o f which would disrupt how the
square works—because those values are now pro tected from outside manipulation.

In JavaScript, the mechanism we use to encapsulate data is not perfect. For instance, you could easily
change the gro w() method o f a square by writing:

OBSERVE:

square1.grow = 3;

...and break your squares! Yet encapsulation lets us hide most o f the details o f how a square works, so that in
order to use a square, we only have to know one thing about it: to grow it, we call the gro w() method.
Everything else is handled for us. Hopefully you'll know better than to change the public interface o f an object
by setting the properties to something else.

Let's review. We defined a Square() constructor that creates new square objects with one public method, gro w() , and various
private variables (sometimes called private "members") and methods. Any properties and methods, fo r instance gro w() , that
are added to the object at construction time (either through the constructor, o r through the object's pro to type) will be accessible
to code that uses the object. Any variables and functions that are defined in the constructor, like id and display() , will no t be
accessible to code outside the object. The interface (API) fo r our square objects is the gro w() method: this is the only method
that code outside the square objects can call.

Defining an interface for your objects is particularly important if you're writing code that you're sharing with o thers. Perhaps
you're working on components for a product at work and o ther members o f your developer group will be using your
components. Or perhaps you're developing a library, like jQuery, that you want to make available online. By encapsulating the
details o f how an object works and providing a simple interface for using the object, you'll be making your objects easier to
understand and easier to use.

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Closures
Lesson Objectives

When you complete this lesson, you will be able to :

create and use a closure to "remember" values.
explain how a closure is created.
use a closure to store a value for a click handler.

Closures
In the previous lesson, you learned about encapsulation and information hiding. All o f that functionality is possible
because o f a feature o f JavaScript: closures. Closures appear to be relatively straightforward, yet they can be really
difficult to wrap your head around. This entire lesson is devoted to closures: what they are, how they work, and when to
use them.

Making a Closure

We've mentioned closures before, now it's time to uncover the mystery that surrounds them. We'll start with
some basic examples and then come back to a couple o f examples from the previous lessons to see how
we've used closures in the past.

Create a new file add this code:

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> Closures </title>
 <meta charset="utf-8">
 <script>

 function makeAdder(x, y) {
 var adder = function() {
 return x + y;
 };

 return adder;
 }

 var f = makeAdder(2, 3);
 var result = f();
 console.log("Result is: " + result);

 </script>
</head>
<body>
</body>
</html>

 Save this in your /AdvJS fo lder as clo sure.ht ml, and . Open the conso le (reload the file if
necessary) and you'll see, "Result is: 5."

In this code we've got a function that returns another function. You may remember from an earlier lesson that
functions are first-class values; that is, you can return a function from a function, just like you can return values
like 3 or "string." The function makeAdder() returns a function, adder() , that adds two values and returns the
result. We've named the function adder() inside makeAdder() , but when we return it from makeAdder() , we
name it f () . So, in order to call the returned function, we use f () . (We could use the same name for the
function in both places, but fo r this lesson we want to have a way to identify the function when it's defined, and
the function when it's called.)

The two values that we want to add together are passed to the madeAdder() function as arguments when we
call it. The function adder() doesn't take any arguments. Instead, adder() adds together the two numbers
passed into makeAdder() . So, how does this work?

Local variables (including parameters o f functions) disappear after the function within which they are defined
is done executing. So, while the parameters x and y are defined when the function adder() is created, when
we call it later, using the name f () , x and y are long gone. So how does calling f () return the (correct) value,
5? It's seems like f () somehow "remembers" the values o f x and y which were defined when f () was created
(as adder()).

Well, that's exactly what happens. The function f () "remembers" the values o f x and y through a closure. Let's
step through the execution o f this code to see the closure in the JavaScript conso le.

First, open the file clo sure.ht ml in the Chrome browser, and add a breakpo int to the line o f code where we
call makeAdder() :

Add a breakpo int, click the So urces tab, and then open clo sure.ht ml (from the left pane). Click on the line
number next to the line o f code where you want to add the breakpo int (in our version, that's line number 16).
The breakpo int appears under the Breakpo int s section in the right pane.

Now, reload the page and click the St ep int o button twice. This is the third button from the left o f the right
pane, with a little arrow po inting down on top o f a period:

We're now on the line where we return adder() . Look in the right pane under Sco pe Variables. The local
variables that are defined inside makeAdder() , including the two parameters, x and y, as well as the adder()
function. These are all local variables because they are defined within makeAdder() .

Click St ep int o twice more; we're now stopped on the line where we call f () (we haven't executed this line
yet). f is a global variable (if you open Glo bal under Scope Variables in the right pane, you'll see it defined as
a global variable, which is the global window object).

Click St ep int o once more, so that we call f () and stop just before we return the result o f adding x and y:

Under Scope Variables, in Local, you see something called Clo sure . Inside that, you'll see two variables: x
and y, with their values set correctly to 2 and 3—the arguments we passed into makeAdder() earlier. This is
the closure, where f () gets its two values to add together.

St ep int o twice again to execute the line o f code, ret urn x + y, and return from f () . The closure disappears:

Click Resume script execut io n to complete the script execution.

What is a Closure?

Now you've made a closure, but what exactly is a closure?

To understand a closure, you need to remember how scope works. In the earlier lesson on scope, we talked

about how the scope chain is created when you call functions. The scope chain is a series o f scope objects
containing the values o f the variables in a function's scope. For global functions (that is, functions defined at
the top level), we have just two scope levels: the local scope (the scope within the function) and the global
scope. When you call a function and refer to a variable, we get the value for that variable first by looking in the
local scope and, if we can't find it there, we look in the global scope.

Now, recall that when we call a nested (or "inner") function, we have three scope levels: the scope o f the
nested function, then the scope o f the function containing the nested function, and finally the global scope.

In our example, we created a nested function named adder() :

OBSERVE:

function makeAdder(x, y) {
 var adder = function() {
 return x + y;
 };

 return adder;
}

var f = makeAdder(2, 3);
var result = f();
console.log("Result is: " + result);

Inside adder() , we refer to two variables, x and y. These variables are defined in the makeAdder() function,
so they are not local to adder() . If we just called adder() from inside makeAdder() (fo r example, if we
changed the line ret urn adder to adder()), you'd see that in order to figure out the values o f the variables x
and y, we'd use the scope chain. We'd look for those values in the scope o f adder() first, but we wouldn't find
them there so we'd look for those values in the scope o f makeAdder() , and we'd find them there.

However, we're not calling adder() from inside makeAdder() ; we're returning adder() from makeAdder() .
When we return the adder() function, it comes along with a scope object: an object that contains the variables
that are in the scope o f adder() when adder() is created. That includes the two variables x and y. This object
is essentially the same as the scope object o f makeAdder() that was created for the scope chain. It's the
context within which adder() is created.

This object is the closure. A closure is an object that captures the context in place when a function is created.
The closure "remembers" all the variables that are in scope at the time the inner function is created. If we just
call the inner function right away, the closure gets thrown away when the containing function ends, but if we
return that inner function, the closure comes along with it:

When we call that function later and look for the values o f the variables it refers to , if we don't find those values
in the function itself (that is, they aren't local variables), we look in the closure:

So the closure becomes part o f the scope chain when you call a function.

The closure looks a lo t like the scope object that's added to the chain when we call a nested function from its
containing function (fo r example, if we called adder() from inside makeAdder()). Although here, we use the
closure instead o f the scope object because we're calling the returned function (f ()) after the containing
function has returned, so we can't use the normal scope chain to find the values o f the variables in f () ; we
have to use the closure instead. We've "captured" the scope, or context, within which the nested function was
created in the closure so we can refer to the variables long after the containing function has completed
execution.

Playing with Closures

Let's play with closures a bit so you can see how they work. First, let's prove that only variables that are
actually referenced by an inner function are added to a closure. Modify clo sures.ht ml as shown:

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> Closures </title>
 <meta charset="utf-8">
 <script>

 function makeAdder(x, y) {
 var z = 10;
 var adder = function() {
 return x + y;
 };

 return adder;
 }

 var f = makeAdder(2, 3);
 var result = f();
 console.log("Result is: " + result);

 </script>
</head>
<body>
</body>
</html>

 and . In the conso le, open the So urces tab, and look at clo sure.ht ml. Clear the previous
breakpo int and add a breakpo int to the line where we return the result o f adding x and y (inside adder()), like
this:

Reload the page. The execution will stop at the breakpo int, so you can inspect the closure. Notice that even
though we've added a local variable z to makeAdder() , that variable is not included in the closure. Why?

Because it's not referenced by adder() , so it's not needed in the closure.

Next, let's prove that only non-local variables are added to a closure:

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> Closures </title>
 <meta charset="utf-8">
 <script>

 function makeAdder(x, y) {
 var z = 10;
 var adder = function() {
 var x = 10;
 return x + y;
 };

 return adder;
 }

 var f = makeAdder(2, 3);
 var result = f();
 console.log("Result is: " + result);

 </script>
</head>
<body>
</body>
</html>

 and preview. In the conso le, open the So urces tab, and look at clo sure.ht ml:

Now, only y is in the closure. The local variable x shadows the parameter x in makeAdder() , so x is no
longer needed in the closure—we'll always use the value o f the local variable if we refer to x in adder() . Also ,
look at the conso le (click on the Co nso le tab); the result is now 13 instead o f 5.

What do you think will happen if we refer to z in adder()?

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> Closures </title>
 <meta charset="utf-8">
 <script>

 function makeAdder(x, y) {
 var z = 10;
 var adder = function() {
 var x = 10;
 return x + y + z;
 };

 return adder;
 }

 var f = makeAdder(2, 3);
 var result = f();
 console.log("Result is: " + result);

 </script>
</head>
<body>
</body>
</html>

 and . In the conso le, open the So urces tab, and look at clo sure.ht ml. Notice we're now
adding z to x and y. Add a breakpo int to the line where we return the result o f adding x, y and z (inside
adder()), like this:

Reload the page. When the execution stops, you'll see that z is now included in the closure, because it's
referenced by adder() .

What do you think will happen if you remove the declaration o f z , but leave the reference to z in adder()? Try it

and see!

Each Closure is Unique

Each time you call makeAdder() , you'll get a function back that adds two numbers together. Let's make
another function, g() , that adds together the numbers 4 and 5:

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> Closures </title>
 <meta charset="utf-8">
 <script>

 function makeAdder(x, y) {
 var z = 10;
 var adder = function() {
 var x = 10;
 return x + y + z;
 };

 return adder;
 }

 var f = makeAdder(2, 3);
 var result = f();
 console.log("Result is: " + result);

 var g = makeAdder(4, 5);
 var anotherResult = g();
 console.log("Another result is: " + anotherResult);

 </script>
</head>
<body>
</body>
</html>

 and . In the conso le, you'll see that the result o f calling g() ("Another result") is 9 . Now, open
the So urces tab, and look at clo sure.ht ml. Add a breakpo int at the line where we return the result from
adder() (line 10 in our version), and reload the page. The first time the execution stops at the breakpo int,
we're calling f () , so you'll see the values 2 and 3 for x and y in the closure. Click Resume script execut io n
again. Now when execution stops at the breakpo int, we call g() , so you'll see the values 4 and 5 for x and y in
the closure.

In o ther words, f () and g() get separate closures containing different values for x and y. You can call f ()
again after calling g() , and you'll still get the right answer. When f () and g() are created, the values o f x and y
are different, so each function has a separate closure, each with different values for the variables that are in it.
Remember, a closure captures the context o f a function when that function is created.

Closures Might Not Always Act Like You Expect

Now, try this:

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> Closures </title>
 <meta charset="utf-8">
 <script>

 function makeAdder(x, y) {
 var adder = function() {
 return x + y;
 };
 x = 10;
 return adder;
 }

 var f = makeAdder(2, 3);
 var result = f();
 console.log("Result is: " + result);

 var g = makeAdder(4, 5);
 var anotherResult = g();
 console.log("Another result is: " + anotherResult);

 </script>
</head>
<body>
</body>
</html>

 and . Look at the result in the conso le. The result o f calling f () is now 13, and the result o f
calling g() is now 15. If you still have the breakpo int at line 10, you'll see that the closure now contains the
value 10 for x in both functions. That's because a closure is a reference to an object: an object that contains

the values o f the variables in the scope o f the function associated with the closure. So, when we call
makeAdder() the first time, we create the function adder() by defining it in makeAdder() . The closure is
created, and adder() gets a reference to that closure object, which contains a property named x with the value
2 (the value we passed into makeAdder()). Before we return the adder() function value, we change the value
of the property in the closure object associated with adder() . adder() still po ints to the same closure object,
but we've changed the value in that closure object, so later, when we call f () (which is just another name for
the adder() function we created when we called makeAdder(2, 3)), we look up the value o f x and find 10
instead o f 2:

This is really important to understand, so look it over a couple o f times. If you don't remember that the closure

This is really important to understand, so look it over a couple o f times. If you don't remember that the closure
associated with a function is an object, and so what's stored in the function object as the closure is actually a
reference to an object, you could run into problems. If you change that object after you've created the function,
that function will use the new values in the object, not the original ones.

Closures for Methods

Closures work for methods (which are just functions in objects) too:

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> Closures </title>
 <meta charset="utf-8">
 <script>

 function makeAdder(x, y) {
 var adder = function() {
 return x + y;
 };
 x = 10;
 return adder;
 }

 var f = makeAdder(2, 3);
 var result = f();
 console.log("Result is: " + result);

 var g = makeAdder(4, 5);
 var anotherResult = g();
 console.log("Another result is: " + anotherResult);

 function makeObject(x, y) {
 return {
 z: 10,
 adder: function() {
 return x + y + this.z;
 }
 };
 }

 var o = makeObject(2, 3);
 var result2 = o.adder();
 console.log("Result in o is: " + result2);

 </script>
</head>
<body>
</body>
</html>

 and . In the conso le, you see that the value o f result 2 is 15.

Go ahead and experiment by setting a breakpo int at the return in the new makeObject () function (line 28 in
our version). When you execute the code with the breakpo int in place, you'll see that when we call o .adder()
the value o f t his is the object o (good!) and that object contains two properties: the method adder() and the
property z that has a value o f 10. The closure contains the values 2 and 3 for x and y. We don't need the value
of t his.z in the closure, because we get that value from the object that contains method we're calling—that is,
o .

Using Closures

Now you know how closures work, so when are they useful. After all, it's not o ften that we create functions that
return o ther functions in our everyday code. Let's look at a few examples o f where closures come in handy.

Using Closures to Create Private Data

We'll start by creating a function that counts. Create a new file and add this code:

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> Counter </title>
 <meta charset="utf-8">
 <script>

 function makeCounter() {
 var count = 0;
 return function() {
 count = count + 1;
 return count;
 };
 }

 var count = makeCounter();
 console.log("Counter: " + count());
 console.log("Counter: " + count());
 console.log("Counter: " + count());
 console.log("Counter: " + count());
 console.log("Counter: " + count());

 </script>
</head>
<body>
</body>
</html>

 Save this in your /AdvJS fo lder as co unt er.ht ml, and . Open the conso le (and reload the
file if necessary) and you see:

OBSERVE:

Counter: 1
Counter: 2
Counter: 3
Counter: 4
Counter: 5

This is kind o f coo l because we've used a closure to encapsulate the counter variable, and the process o f
counting. In o ther words, the counter variable, co unt , is to tally private, and the only way to increment it is to
call the function co unt () . The co unt variable exists only within the closure for the function co unt () , so no
one can come along and change the value o f the counter by do ing anything o ther than calling co unt () .

Closures as Click Handlers

So far we've looked at examples that return a function from a function, and seen how the function that is
returned comes along with a closure object. Another way to use a function after the context within which the
function is created has gone away is to assign a function to an object property; fo r instance, like when we
assign handlers for events to a property in an object, like a <div>. Create a new file to look at a common use
of closures—and a common mistake that goes along with it:

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> Closures for divs </title>
 <meta charset="utf-8">
 <style>
 div {
 position: relative;
 margin: 10px;
 background-color: red;
 border: 1px solid black;
 width: 100px;
 height: 100px;
 }
 </style>
 <script>
 window.onload = function() {
 var numDivs = 3;
 for (var i = 0; i < numDivs; i++) {
 var div = document.getElementById("div" + i);
 div.onclick = function() {
 console.log("You just clicked on div number " + i);
 };
 }
 };
 </script>
</head>
<body>
 <div id="div0"></div>
 <div id="div1"></div>
 <div id="div2"></div>
</body>
</html>

 Save this in your /AdvJS fo lder as divsClo sure.ht ml and . You see three red squares.
Open the conso le and try clicking on each o f the squares. Each time you do, you'll see "You just clicked on
div number 3." Can you figure out why we get "3" each time, instead o f the correct value for each <div> (that is,
0 , 1 or 2)? Think about it fo r a few minutes before you go on.

First, we've got three different <div>s in the page, with the ids "div0 ," "div1," and "div2." We want to add a click
handler to each <div>. Each click handler will do the same thing: display a message showing the number
corresponding to the number in the id o f the <div>. So if you click on the "div0" <div>, you'll see the message,
"You just clicked on div number 0 ," and likewise for <div>s 1 and 2.

So, in the code, we create a for loop to iterate through the three <div>s and add a click handler to each. We
use the loop variable i fo r the number o f the <div> so we can display that number in the click handler. Notice
that the click handler f unct io n that we assign to each o f the <div> objects references the variable i, and i is
not defined in the click handler f unct io n—it's defined in the scope surrounding the click handler
f unct io n (that is, in the windo w.o nlo ad function).

So what happens? A closure is created! When we store the function value o f the click handler f unct io n in
the o nclick property, that function comes along with a closure that contains the variable i. Later, when you
click on the <div>, the value o f i will be found in the closure associated with the click handler f unct io n.

OBSERVE:

window.onload = function() {
 var numDivs = 3;
 for (var i = 0; i < numDivs; i++) {
 var div = document.getElementById("div" + i);
 div.onclick = function() {
 console.log("You just clicked on div number " + i);
 };
 }
};

That all sounds good, but it's not working right. We see 3 every time we click on any o f the <div>s instead o f
the correct number for the <div>. Why?

Well, remember, a closure associated with a function is an object, and the function contains a reference to that
closure object. So if we change the value o f a variable that's captured in the closure after we create that
closure, we're changing the value o f the variable that will be used when we call that function later.

In this example, each time we set the click handler f unct io n to the o nclick property o f a <div>, the value o f
i will be correct initially, but then we change the value o f i the next time through the loop, which changes the
value in the closure we just made.

Our loop stops iterating when the value o f i is 3. So when we call any o f those click handler functions later
(like when you click on a <div>), you see the value o f i that was in place at the end o f the loop, not the value o f
i that was in place when the closure was created originally.

Try using the conso le to add a breakpo int in the code to inspect the closure. Add the breakpo int on the line in
the click handler function where we use co nso le.lo g() to display the <div> information. Click on a <div> to
see the closure when the click handler function is called.

We can fix this by creating another closure. Let's see how:

CODE TO TYPE:

...
window.onload = function() {
 var numDivs = 3;
 for (var i = 0; i < numDivs; i++) {
 var div = document.getElementById("div" + i);
 div.onclick = function() {
 console.log("You just clicked on div number " + i);
 };
 div.onclick = (function(divNum) {
 return function() {
 console.log("You just clicked on div number " + divNum);
 };
 })(i);
 }
};

 and . Try clicking on each <div> again. Now you get the correct number values for each <div>.

How does this work?

OBSERVE:

window.onload = function() {
 var numDivs = 3;
 for (var i = 0; i < numDivs; i++) {
 var div = document.getElementById("div" + i);
 div.onclick = (function(divNum) {
 return function() {
 console.log("You just clicked on div number " + divNum);
 };
 })(i);
 }
};

When we assign the value o f each <div>'s click handler f unct io n, we do so by executing ano t her
f unct io n that returns a function value for the click handler. T his f unct io n executes right away. It seem a
little odd because we're putting the function expression in parentheses first, and after the function expression,
we have another set o f parentheses:

OBSERVE:

div.onclick = (function(divNum) { ... }) (i);

We're calling the f unct io n we just creat ed. (We'll talk more about this pattern o f creating and calling a
function in one step in a later lesson).

Putting the function expression in parentheses makes sure the function expression is treated as an
expression, and not a function declaration. Also, we pass the value o f i into the f unct io n we're calling. The
value gets passed into a variable divNum , which is used by a f unct io n we're returning from the f unct io n
we just called. When we return a f unct io n from a f unct io n, we create a closure that contains any
variables referenced by the t he f unct io n being ret urned that are defined in the f unct io n t hat co nt ains
it . In this case, both o f these functions are anonymous; we're not actually giving them names like we did
before with makeAdder() and adder() , but that's okay. The closure works in exactly the same way. In this
case, the closure associated with the t he f unct io n being ret urned contains the value o f divNum . Note
that this value does not change. Even if the value o f i changes, the value o f divNum in the closure does not
(remember that arguments are passed by value to functions, so divNum gets a copy o f the value in i).

The f unct io n t hat 's ret urned is assigned to the div.o nclick property, so it is available once the
windo w.o nlo ad function has completed. That means that the values in that function's closure are also
available, so when you click on a <div>, you'll get the correct number for that <div> because you're accessing
the divNum variable in the closure. Add a breakpo int to the code on the co nso le.lo g() line again (line 23 in
our version), and inspect the closure when you click on a <div>. You'll see the variable divNum and the
correct number for the <div> you clicked on:

Using a closure like this to capture the current value o f a variable by passing it to a function that returns
another function is a common technique used by JavaScript programmers (and one we'll look at more in the
next lesson).

Where We've Used Closures Before

Before we end the lesson, let's look at two examples from earlier in the course where we used closures.

First, take another look at the example, AdvJS/f unct io ns3.ht ml from the Functions lesson. (If you don't
have this file, no worries—you can copy it in and save it as AdvJS/f unct io ns3.ht ml.)

CODE TO TYPE: This code is in the file functions3.html in your AdvJS/ fo lder

<!doctype html>
<html>
<head>
 <title> Returning Functions </title>
 <meta charset="utf-8">
 <script>
 function makeConverterFunction(multiplier, term) {
 return function(input) {
 var convertedValue = input * multiplier;
 convertedValue = convertedValue.toFixed(2);
 return convertedValue + " " + term;
 };
 }

 var kilometersToMiles = makeConverterFunction(0.6214, "miles");
 console.log("10 km is " + kilometersToMiles(10));

 var milesToKilometers = makeConverterFunction(1.62, "km");
 console.log("10 miles is " + milesToKilometers(10));
 </script>
</head>
<body>
</body>
</html>

We created this example to show how to return a function from a function. The function we return from
makeCo nvert erFunct io n references the two parameters: mult iplier and t erm . When we call the returned
function later (as kilo met ersT o Miles() o r as milesT o Kilo met ers()), we'll use the closures associated
with the two functions that captured the context—the values o f the parameters when the function was defined
and returned—to determine the values o f those variables.

Try adding a breakpo int inside the function that's returned (within makeCo nvert erFunct io n) so you can
see the closures in action.

Let's also look again at the squaresAPI.ht ml example from the Encapsulation and APIs lesson. In that
lesson we talked about encapsluation and information hiding. We used a constructor, Square() , to create
objects, but kept some of the data in the object being created private by not assigning values to properties o f
the object. Instead we used local variables and nested functions. (Again, if you no longer have the file
squaresAPI.ht ml in your AdvJS/ fo lder, feel free to copy it in from here and save it as
AdvJS/squares.ht ml.)

EncapsulationAndAPIS.html#an_example

CODE TO TYPE: This code is in the file squaresAPI.html in your AdvJS/ fo lder

<!doctype html>
<html>
<head>
 <title> Squares with API </title>
 <meta charset="utf-8">
 <style>
 .square {
 background-color: lightblue;
 cursor: pointer;
 }
 .square p {
 padding-top: 35%;
 text-align: center;
 -webkit-user-select: none;
 -moz-user-select: none;
 -ms-user-select: none;
 user-select: none;
 }
 </style>
 <script>
 function Square(size) {
 var initialSize = size;
 var el = null;
 var id = getNextId();

 this.grow = function() {
 setBigger(10);
 setColor("red");
 };

 this.reset = function() {
 setBigger(initialSize - size);
 setColor("lightblue");
 };

 var self = this;
 display();

 function setBigger(growBy) {
 if (el) {
 size += growBy;
 el.style.width = size + "px";
 el.style.height = size + "px";
 }
 }

 function setColor(color) {
 if (el) {
 el.style.backgroundColor = color;
 }
 }

 function display() {
 el = document.createElement("div");
 el.setAttribute("id", id);
 el.setAttribute("class", "square");
 el.style.width = size + "px";
 el.style.height = size + "px";
 el.innerHTML = "<p>" + id + "</p>";
 el.onclick = self.grow;
 document.getElementById("squares").appendChild(el);
 }

 function getNextId() {
 var squares = document.querySelectorAll(".square");
 if (squares) {

 return squares.length;
 }
 return 0;
 }
 }

 window.onload = function() {
 var square1 = new Square(100);
 var square2 = new Square(200);

 var growButton = document.getElementById("growButton");
 growButton.onclick = function() {
 square1.grow();
 square2.grow();
 };

 };
 </script>
</head>
<body>
<form>
 <input type="button" id="growButton" value="Grow!">
</form>
<div id="squares"></div>
</body>
</html>

The closure created by the Square() constructor is a little less obvious, but it's there. In t his.gro w() , we refer
to two nested functions, set Bigger() and set Co lo r() . Both are nested functions which means they are local
variables in the Square() constructor. Just like any o ther kind o f local variable, like init ialSize o r id, the
values o f these functions will disappear once Square() completes executing.

Because we reference these functions in t his.gro w() , the functions are added to the closure for the
t his.gro w() method. In addition, any local variables that are in scope for these two functions are also added
to the closure. Why? Because those values might be needed when we call square1.gro w() and
square2.gro w() , o therwise, we'd get a reference error. So both o f the function values that are used directly by
t his.gro w() , as well as any o ther variables in scope for those two functions, are added to the closure. You
can inspect the closure by adding a breakpo int to one o f the lines o f code in t his.gro w() . When you click the
Gro w button to call the t his.gro w() method o f the square, you'll hit the breakpo int, and you'll be able to see
the closure:

Whenever you create a function that references variables from the surrounding context, a closure is created. If you return that
function from a function, or assign it to an object property, so the function is available outside o f the context within which it was
created, the closure comes along with the function. This means the function can "remember" the values o f the variables it
references. This is where the closure gets its name: a closure "closes" over the variables in scope when the function is created
so it can keep them available for the function later, after the original context disappears. Think o f closures as functions plus
scope. If you understand scope, you'll understand closures too.

Note that closures aren't necessary for global variables, because global variables have global scope. They are available
everywhere in your code, so there's no need to "remember" them in a closure.

The primary use for closures is to create private data, like we did with the counter example and with the squares example. You'll
see closures used this way frequently (fo r example, in libraries like jQuery and Backbone.js).

Closures are notoriously tricky to wrap your head around, so take some extra time to review the lesson again and make sure
you've got it. Use the Chrome conso le to inspect the closures you create to help you understand what's go ing on.

Copyright © 1998-2014 O'Reilly Media, Inc.

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

The Module Pattern
Lesson Objectives

When you complete this lesson, you will be able to :

use an Immediately Invoked Function Expression, IIFE, to create a local scope for your code.
explain how variables are accessible after the IIFE has completed by using a closure.
use the Module Pattern in the implementation o f jQuery.
use the Module Pattern to create modules o f code.

Module Pattern
The Module Pattern has emerged as one o f the most common patterns you'll see in JavaScript. It's used by most
JavaScript libraries and plug-in scripts, including libraries like Backbone.js, jQuery, YUI, Pro to type, and more. You can
use the pattern to keep code organized, reduce the number o f globals you use, encapsulate structure and behavior,
and provide a simple API fo r your objects. All this is possible because o f closures, which you learned about in the
previous lesson. In this lesson, we take a look at the Module Pattern: what it is, how it works, how it's related to
closures, and how it can help you organize your code.

IIFE or Immediately Invoked Function Expressions

To understand the Module Pattern, you need to know how closures work (you've done that), how to use
objects with closures to create private and public data (you've done that), and what it means to create a public
API fo r an object (you've done that too). The only piece you don't know yet (although we did see one in the
previous lesson) is the Immediately Invoked Function Expression.

Let's take a look at the simplest kind o f IIFE you can create:

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> IIFE </title>
 <meta charset="utf-8">
 <script>
 (function() {
 var x = 3;
 })();
 </script>
</head>
<body>
</body>
</html>

 Save this in your /AdvJS fo lder as iif e .ht ml, and . You won't see anything yet because so
far, our IIFE doesn't do much. We need to make it do something, but first, let's explore exactly what's go ing on
in the code:

OBSERVE:

(function() {
 var x = 3;
})();

Let's break down this code into three parts. First, look at the f unct io n expressio n. This is an anonymous
function (a function without a name), and all it does right now is initialize a variable x to 3.

Second, we have parent heses around the function. We put them there because we want to execut e t he
f unct io n, immediat e ly, which is the third part. We need the parent heses around the function to make it a

function expression rather than a function declaration, because JavaScript will create a function declaration
automatically when it sees the f unct io n keyword when you use it at the global level. If you try to execute a
function declaration immediately, you'll get a syntax error (try it and see: remove the parentheses and you'll
get a syntax error). By putting the parent heses around the function, we create a function expression, which
we can then execute immediately by adding parent heses after the function.

That code is almost the same as this code:

OBSERVE:

function foo() {
 var x = 3;
}
foo();

Here, we have a f unct io n declarat io n fo r the function f o o . Then we call t he f unct io n immediately after
defining it.

Both these pieces o f code accomplish essentially the same thing: they create a context (or scope) fo r the
variable x. x is a local variable; it is available only inside the function scope. However, there is one key
difference: in the first version, we never name the function, so no changes are made to the global object. The
code executes without affecting the global object at all (it doesn't add any new variable or function definitions).
In the second version, we do change the global object: we add the name f o o to it and the value o f f o o is set
to a function.

The first version o f the code is an IIFE. The IIFE is used to create a context with a function within which you can
declare variables, define functions, and execute code without affecting the global variables in your JavaScript.
An IIFE is named as such because we call (invoke) the function in the same expression where we define it. In
o ther words, we call the function expression immediately.

An IIFE can be pretty useful. For instance, you could create an IIFE that sets up a click handler fo r an element
in your page. Modify iif e .ht ml as shown:

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> IIFE </title>
 <meta charset="utf-8">
 <script>
 (function() {
 var x = 3;
 var message = "I've been clicked!";
 window.onload = function() {
 var div = document.querySelector("div");
 div.onclick = function() {
 alert(message);
 };
 };
 })();
 </script>
</head>
<body>
 <div>click me!</div>
</body>
</html>

 and . The words click me! appear in your page. Click on the text, and you see the "I've been
clicked!" alert.

We've accomplished some work in the page (set up a click handler), but again, we've done it without adding
anything new to the global object except fo r a value for the windo w.o nlo ad property. However, the o ther
variables, x, message , and div are all private to the IIFE, and disappear once the function has finished
executing when the page is loaded.

We can, however, click on the text and see the message after the IIFE has long gone. How? With a closure, o f

course! Whenever we create a function that references variables defined in the surrounding context o f that
function, and make that function available for use outside o f that context, a closure that contains the values o f
the variables that function needs comes with it so the function "remembers" those values.

Inside our IIFE, we assign a click handler f unct io n to the o nclick property o f the <div> element. This
function references the variable message , and because the function is available after our IIFE goes away
(because we saved it in the <div> element's onclick property, and the <div> element doesn't go away), we get
a closure along with the function. That closure contains the variable message .

OBSERVE:

(function() {
 var message = "You've been clicked!";
 window.onload = function() {
 var div = document.querySelector("div");
 div.onclick = function() {
 alert(message);
 };
 };
})();

IIFEs are useful fo r getting work done while having minimal effect on the global scope. Additionally, you can
use them to set up code to run later by assigning values to properties o f objects, like the <div> element, that
do stick around after the IIFE is gone.

The Module Pattern

Now you know everything you need to know in order to use the Module Pattern. Let's look at an example o f a
small program that is structured using this pattern. Create a new file as shown:

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> Module Pattern </title>
 <meta charset="utf-8">
 <script>

 var counterModule = (function() {
 var counter = 0;

 return {
 increment: function() {
 counter++;
 },
 decrement: function() {
 counter--;
 },
 reset: function() {
 counter = 0;
 },
 getValue: function() {
 return counter;
 }
 };
 })();

 window.onload = function() {
 counterModule.increment();
 counterModule.increment();
 counterModule.decrement();
 counterModule.increment();
 console.log(counterModule.getValue());
 counterModule.reset();
 };

 </script>
</head>
<body>
</body>
</html>

 Save this in your /AdvJS fo lder as mo dule.ht ml, and . The value 2 displays in the conso le.

Let's examine this code more closely. First, we use an IIFE to create an object that manages a variable,
co unt er. Unlike our previous IIFE example, we actually return a value from the function: an object that
contains four methods to manage the counter. However, the counter is not part o f the object that's returned.
Instead, it's a local variable to the IIFE, which means that it's a private variable. Because the object's methods
reference this variable, when the object is returned, we get a closure with each o f the methods that contains
the co unt er variable (and note that each closure references the same variable, so if one o f the methods
changes the value o f co unt er, it will change for the entire object).

Next, we name the object that's returned. We give it the name co unt erMo dule . This is a global variable so
it's available to the rest o f our program to use, but note that it's the only global variable we create (o ther than
setting the windo w.o nlo ad property to a function). The counter itself is private and accessible only using
methods in the co unt erMo dule object.

This is the po int o f the Module Pattern: to minimize the number o f global variables and functions you create in
your program (preferably limiting the number to just one global object that contains everything else you need).
The object you return from your IIFE contains public data and public methods, and all the private data is in the
closure associated with the object's methods. So the object acts as an API to all the functionality the object
provides to your page. This is the "module": an independent set o f functionality that contains everything
necessary to execute one aspect o f the overall desired functionality in the page. In this example, our "module"
is the counter: everything you need for the counter is encapsulated within the co unt erMo dule module.

As you can see, the concepts used in the Module Pattern are all concepts we've seen before: public and

private data, an API, and closures. The pattern a way to describe how to use these concepts together to
structure your code a certain way. A pattern is a design; it's not an implementation. It's a guideline for how to
structure your code to achieve a goal. In this case, that goal is to create a context fo r a set o f functionality that
is accessible to the page globally, but has minimal impact on the global variables in the page.

Using the Module Pattern with JavaScript Libraries

The Module Pattern is particularly useful fo r JavaScript libraries and widgets, because it allows you to
combine code from several different sources, knowing that it's unlikely you'll overwrite variables from another
library by mistake. Because the module object provides a public API fo r managing private data, it's also
unlikely that you'll do something disastrous by accessing a variable in a way you shouldn't (if you use the API
correctly).

As an example, look at how jQuery is structured. The actual source code has some additional complexities
we won't go into here, but if you look at the snippet o f source code below, you'll see that the authors o f jQuery
use the Module Pattern to structure the code for the library. The internals o f jQuery are implemented as private
variables and methods, and the library functionality fo r you to use is exposed through the public methods in
the jQuery object (also named $). In this case, once the jQuery object has been set up with everything it needs
inside the IIFE, rather than returning that object, the jQuery object is assigned to two properties in the global
object: windo w.$ and windo w.jQuery (so you can refer to the jQuery module using either name):

OBSERVE:

(function(window, undefined) {

 // lots of code here

 // Define a local copy of jQuery
 jQuery = function(selector, context) {
 // The jQuery object is actually just the init constructor 'enhanced'
 return new jQuery.fn.init(selector, context, rootjQuery);
 },

 // lots more code here...

 // Here is where we add the jQuery object as a global variable
 // so you can access all the public properties and methods
 window.jQuery = window.$ = jQuery;

})(window);

Don't worry about the details o f the code above (which is just a tiny snippet taken from the current version o f
jQuery). Just notice that the structure o f the library uses the Module Pattern. Almost every JavaScript library
out there uses this pattern.

If you're using multiple libraries, you might find it useful to structure your own code using the module pattern,
and import the libraries into your module like this:

OBSERVE:

var myModule = (function(J$, U$) {

})(jQuery, _);

Here, we pass two arguments into our IIFE: the jQuery object (which we get when we link to the jQuery
library) and the _ object, which is the name of the global object fo r the Underscore library. We can alias these
two library objects by using different names for the parameters in the IIFE: J$ fo r jQuery and U$ fo r
Underscore. You might just like these names better; but sometimes you can do this to avo id name clashes
within your module.

A Shopping Basket Using the Module Pattern

Here's another example o f using the Module Pattern—a shopping basket module:

http://code.jquery.com/jquery-latest.js
http://underscorejs.org

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> Shopping Basket: Module Pattern </title>
 <meta charset="utf-8">
 <script>
 var basket = (function() {
 var basket = {};
 var items = [];

 //
 // Add a new item to the basket.
 // If item already exists, increase the count of existing item.
 // Returns: number of that item in the basket.
 //
 function addItem(item, cost) {
 for (var i = 0; i < items.length; i++) {
 if (items[i].name == item) {
 items[i].count++;
 return items[i].count;
 }
 }
 items.push({ name: item, price: cost, count: 1 });
 return 1;
 }

 //
 // Remove an item from the basket
 // If item has more than 1 in basket, reduce count.
 // If no more items left after removing one, remove item completely.
 // Returns: number of that item left or -1 if item you tried
 // to remove doesn't exist.
 //
 function removeItem(item) {
 for (var i = 0; i < items.length; i++) {
 if (items[i].name == item) {
 items[i].count--;
 if (items[i].count == 0) {
 items.splice(i, 1);
 return 0;
 }
 return items[i].count;
 }
 }
 return -1;
 }

 //
 // Compute the total cost of items in the basket.
 //
 function cost() {
 var total = 0;
 for (var i = 0; i < items.length; i++) {
 total += items[i].price * items[i].count;
 }
 return total;
 }

 basket.addItem = function(item, cost) {
 var count = addItem(item, cost);
 console.log("You have " + count + " of " + item + " in your basket."
);
 };
 basket.removeItem = function(item) {
 var count = removeItem(item);
 if (count >= 0) {

 console.log("You have " + count + " of " + item + " left in your
 basket.");
 } else {
 console.log("Sorry, couldn't find " + item + " in your basket to
 remove.");
 }
 };
 basket.cost = function() {
 var totalCost = cost();
 console.log("Your total cost is: " + totalCost);
 };
 basket.show = function() {
 console.log("====== Shopping Basket =========");
 for (var i = 0; i < items.length; i++) {
 console.log(items[i].count + " " + items[i].name + ", " + (items
[i].price * items[i].count));
 }
 console.log(" ");
 };

 return basket;
 })();

 window.onload = function() {
 basket.addItem("broccoli", 1.49);
 basket.addItem("pear", 0.89);
 basket.addItem("kale", 2.38);
 basket.addItem("broccoli", 1.49);
 basket.show();

 basket.cost();

 basket.removeItem("broccoli");

 basket.cost();
 };

 </script>
</head>
<body>
</body>
</html>

 Save this in your /AdvJS fo lder as basket .ht ml, and . In the conso le, this output is
displayed:

OBSERVE:

You have 1 of broccoli in your basket.
You have 1 of pear in your basket.
You have 1 of kale in your basket.
You have 2 of broccoli in your basket.
====== Shopping Basket =========
2 broccoli, 2.98
1 pear, 0.89
1 kale, 2.38

Your total cost is: 6.25
You have 1 of broccoli left in your basket.
Your total cost is: 4.76

In our module, we have a couple o f private variables: basket (the object we return as the value for the
module), and it ems (an array that ho lds the items in your basket). We also have a few private functions that
handle the functionality o f managing the shopping basket: addIt em() , remo veIt em() , and co st () . Once the
module is created, none o f these private variables or functions will be available to the user o f the module,
except through the public API which is created by returning the basket object from the IIFE and storing the

resulting value in the basket global variable.

Notice that we use the same name for the local variable for the basket object and the global variable to store
the finished module. This is perfectly fine.

The public API is the co llection o f methods in the basket object: basket .addIt em() ,
basket .remo veIt em() , basket .co st () , and basket .sho w() . These methods can be used by code that
uses the basket module.

Look through the code and make sure you understand how it works and how it's structured using the Module
Pattern. Keep in mind that the pattern is a design guideline, no t a specific implementation, so it's expressed in
code in different ways depending on the needs o f the specific module you're implementing.

Why Not Just Use an Object Constructor?

So, why would you use the Module Pattern when you could just use an object constructor and achieve the
same thing, like this?:

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> Counter Constructor instead of Module Pattern </title>
 <meta charset="utf-8">
 <script>
 function CounterModule() {
 var counter = 0;

 this.increment = function() {
 counter++;
 };
 this.decrement = function() {
 counter--;
 };
 this.reset = function() {
 counter = 0;
 };
 this.getValue = function() {
 return counter;
 };
 };

 var counterModule;
 window.onload = function() {
 counterModule = new CounterModule();
 counterModule.increment();
 counterModule.increment();
 counterModule.decrement();
 counterModule.increment();
 console.log(counterModule.getValue());
 counterModule.reset();
 };

 </script>
</head>
<body>
</body>
</html>

 Save this in your /AdvJS fo lder as mo dule2.ht ml, and . In the conso le, the same output
displays as with our previous version o f the counter module: 2.

Here, we use a constructor function, Co unt erMo dule() , to create exactly the same kind o f object that we did
before: an object with some public methods to manage the counter, which is a private variable (and
accessible only through those public methods).

The difference between the two approaches is in the way we create the counter. If we use a constructor
function, we need to create a co unt erMo dule using new Co unt erMo dule() (which is fine). Using new to
create the object or using the Module Pattern to create the object accomplishes essentially the same thing.

You'd use the Module Pattern when you want just one version o f the object. When we use the Module Pattern,
we know that the user o f the module can't instantiate multiple instances o f the object, because there's no
constructor. When we use a constructor, we can get many instances o f the object. In the case o f libraries like
jQuery, Underscore, and o thers that use the Module Pattern, we know we'll only want one o f each o f these
objects (having more would be po intless). So, whether you use the Module Pattern or an object constructor
really depends on how you plan to use the object (or objects) you create. Do you need just one? Use the
Module Pattern. Do you need many? Use a constructor.

In this lesson, you learned about the Module Pattern: a design guideline for how to structure your code to reduce the number o f
global variables you use, manage private data and functionality, and create a public API (through one global object) to access
that private data and functionality. Because JavaScript has one global object that's shared by all the code that you write in a
page, as well as any code you link to (both external libraries and your own additional code), this is a popular pattern that helps
to reduce name clashes and keep the global namespace "clean." This is particularly important fo r large pro jects where you may
not always know the names that are being used in o ther parts o f the code.

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

The JavaScript Environment
Lesson Objectives

When you complete this lesson, you will be able to :

explore your browser's JavaScript extensions.
distinguish between the core language and the extensions provided by the environment in which your code runs.
compare how the browser runs your code depending on where you put that code in a page.
describe and distinguish the two phases the browser uses to execute JavasCript code.
explain how the event loop works.
create and handle multiple events.

JavaScript Runs in an Environment
In this course, we've been focusing on the language features o f JavaScript, but there's more to it because JavaScript
runs in an environment. Most o f the time, that environment is the browser. We've seen a little o f the interaction between
JavaScript and the browser when we used JavaScript to update the DOM by adding new elements or styling elements,
or getting user input from a form. In this lesson, we look closer at how JavaScript interacts with its environment, and
things you need to be aware o f when running JavaScript in the browser.

The Core Language, and the Environment's Extensions

JavaScript was created in 1995 (eons ago in internet time) specifically to run in the Netscape browser;
JavaScript is still primarily a language for the browser. It has gotten beyond the browser though, most notably
as a scripting language for PDF documents, OpenOffice, DX Studio , Logic Pro to name a few. In addition,
JavaScript can now be used as a server-side language running in environments like Node.js.

JavaScript runs in an environment, and that environment is usually the browser. Depending on the
environment in which JavaScript is running, there will be ways you can alter the language to manipulate that
environment. If you're running JavaScript in the browser, you get extra "stuff" along with the language basics,
that allows you to get data from the page, manipulate the content o f the page, and even change the style o f the
page.

You can think o f JavaScript as a language that's composed o f two parts: the core language and the
extensions that are supplied by the environment in which it's running. The core o f the language are the syntax
and semantics that contro l actions like how you define variables and functions, how you write loops, how you
call functions, how scope works, and so on.

The extensions to the language are the parts that are supplied by the environment. Typically these parts are
objects that provide a JavaScript interface for you to use in that environment. For the browser, this refers to
elements like the do cument object, the windo w object, and all the properties and methods that come along
with those objects.

Inspect these objects in the conso le:

INTERACTIVE SESSION:

> window
Window {top: Window, window: Window, location: Location, external: Object, chrom
e: Object}

Try this in Chrome. Twirl down the arrow next to the result, and you'll see a long list o f the various properties
of the windo w object:

Every browser will give you some representation o f the windo w object if you type this into the conso le, but
they might be a little different from one another.

Now try the do cument object:

INTERACTIVE SESSION:

> document
#document
 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
 <html>...</html>

Again, twirl down the arrow next to #do cument so you can see a display o f the do cument object. The
do cument object represents your web page, so when you open it up, you see the content o f your page.

do cument has lo ts o f properties and methods you can use to access the content o f your page, like

get Element ById() and o thers. To see which properties do cument has, type "document" with a period
fo llowing it:

INTERACTIVE SESSION:

> document.

If you do this in Chrome, Safari, Firefox or IE, you'll see a pop up window that shows you all the properties o f
do cument that you can type next:

Scro ll down through the list and you'll see many properties you're familiar with, as well as many you're not
familiar with yet.

The do cument object is a property o f the windo w object:

INTERACTIVE SESSION:

> window.document
#document
 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
 <html>...</html>

All o f the browser-related things you'll do with JavaScript are properties o f the windo w object. We say the
windo w object is the global object or head object, because it gives you access to all the o ther objects you'll
use to manipulate the browser environment. Try typing the names o f these properties in the browser and see
what you get (we're showing results from Chrome here):

INTERACTIVE SESSION:

> window.localStorage
 Storage {2269ae85-adeb-40cb-aef0-c43e9b4940ea_popup_openPosition: "{"top":184,
"left":270}", 235486a4-943d-45a7-a1f4-31d1b4d6bae1_popup_openPosition: "{"top":1
84,"left":314}", 3437639f-10f2-4bd7-8e24-2314e5beeb6d_popup_openPosition: "{"top
":184,"left":270}", 3af686d4-ef0e-4ba4-a302-81bf2a8c23d6_popup_openPosition: "{"
top":33,"left":2}", 46c2259c-fa5e-4c41-8bf7-3973fc2f678e_popup_openPosition: "{"
top":184,"left":270}"...}
> window.navigator.geolocation
 Geolocation {getCurrentPosition: function, watchPosition: function, clearWatch
: function}
> window.JSON
 JSON {}

Remember that because the windo w object is the global object, it's also the default object, so to access a
property o f the windo w object you don't have to type windo w. For instance, you can write windo w.alert () o r
just alert () , windo w.JSON, o r just JSON.

You can also create and inspect elements right in the conso le to see which properties are supported by the
various element objects in the browser. For instance, if you want to see the properties supported by the
<video> element, try this:

INTERACTIVE SESSION:

> var media = document.createElement("video")
undefined
> media.

We created a <video> element using the do cument .creat eElement () method. Once we have that element
(in a variable, it's not added to the page), we can inspect it by typing "media" fo llowed by a period. Just like
before, a popup window appears with all the various properties that the <video> element supports. There are
some different properties and methods in the list that aren't supported by o ther elements, or by the
do cument object. Because a video object is a DOM object, it will inherit many methods that all element
objects have, but it has a few, like aut o play and lo o p, that are unique to video (and audio , which has many
of the same properties as video).

How the Browser Runs JavaScript Code

When JavaScript was first added to browsers, it was purely an interpreted language. To run the JavaScript in
your web page, the browser begins interpreting and executing your JavaScript, from the top down, as the page
is loaded. Each line o f your code is parsed by o ther code internal to the browser and then evaluated. The
browser's runtime environment contains all o f your variables, functions, and so on, so if you declare a
variable x and give it the value 3, the browser creates a bit o f storage in that runtime environment, and stores
the value 3 there.

Interpreted languages are typically slower than compiled languages, like C, C++, Java, and C#, because they
are not converted to machine code or optimized before they are run. The browser interprets each and every
line o f code as it gets to the next line, and has to parse each line o f code just as you've written it.

For this reason, JavaScript in the browser has been notoriously slow. However, as developers began to
expand the way web pages are used, and create web pages that are more like applications than static
documents, browser developers began to see a huge advantage to making JavaScript faster. Think o f
Google Maps: we want maps to run fast so we can scro ll around in the map, zoom in and out, and have the
page respond quickly.

Browser developers began to build JavaScript engines into browsers that compile JavaScript code (using
"Just In Time," or JIT, compilers), and turn it into a special code that could be run faster by the browser. For
example, Chrome's V8 JavaScript engine compiles your JavaScript into machine code before the browser
executes the code. As the browser compiles your code, it can make optimizations so that the code will run
even faster.

Browsers still run your code top down (as most runtime environments do), so how you write your code
hasn't changed. The way the browsers deal with your code has changed though, which has resulted in huge
speed increases when you run JavaScript, so now you can write huge applications in your web pages that run
fast (think o f applications like Google maps and mail, Facebook, Netflix and Hulu, Evernote, Vimeo and
YouTube, and many more).

Note To learn more about how JavaScript engines in browsers work, check out the links on the
JavaScript Engine Wikipedia page.

Including JavaScript in Your Page

There are two ways to include JavaScript in your page: as embedded script in an HTML page (using the
<script> element), and as a link to an external script. If you include your script (as an embedded script o r as a
link) at the top o f your page, typically in the <head> element, the JavaScript will be executed before the
browser interprets your HTML:

OBSERVE:

<!doctype html>
<html>
<head>
 <title> </title>
 <meta charset="utf-8">
 <script>
 var x = 3;
 </script>
</head>
<body></body>
</html>

or

OBSERVE:

<!doctype html>
<html>
<head>
 <title> </title>
 <meta charset="utf-8">
 <script src="external.js"> </script>
</head>
<body></body>
</html>

Place your code at the end o f your page, like this:

http://en.wikipedia.org/wiki/JavaScript_engine#JavaScript_engines

OBSERVE:

<!doctype html>
<html>
<head>
 <title> </title>
 <meta charset="utf-8">
</head>
<body>
<div>
 Other HTML here
</div>
<script>
 var x = 3;
</script>
</body>
</html>

The code will run after the rest o f your page has loaded and the browser has interpreted the HTML.

We used to recommend that you add your JavaScript in the <head> o f your document, but recently more
developers are recommending that you add your JavaScript at the bottom, just before the closing </body>
tag. As JavaScript gets larger (fo r more complex pages), it takes longer to download, parse, and execute the
JavaScript, so the user has to wait longer to see the web page. Either way will work, but if you're writing a
complex page with large JavaScript files, you may want to test your page to see if including the JavaScript at
the bottom of the file leads to a better user experience.

An advantage o f having your JavaScript in an external file is that if the JavaScript is used by multiple web
pages, the browser will cache the JavaScript file, so it doesn't have to be downloaded multiple times. This is
particularly important fo r library files, like jQuery or Underscore.js, which are typically used for a whole web
site rather than just one page. If you use a well-known URL for the library (like the site's hosting URL, or even
a URL on Google's servers), it's likely that the user's browser already has that file cached, which will reduce
the download time even more.

To see the difference between including your code in the <head> o f your page and at the bottom, try this:

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> Script Testing </title>
 <meta charset="utf-8">
 <script>
 var div = document.getElementById("div1");
 div.innerHTML = "Testing when the browser loads a script";
 </script>
</head>
<body>
 <div id="div1"></div>
</body>
</html>

 Save this in your /AdvJS fo lder as t est Lo ad.ht ml, and . Open the conso le. You see a
message, "Uncaught TypeError: Cannot set property 'innerHTML' o f null."

Now move the script to the bottom of the page:

https://developers.google.com/speed/libraries/?csw=1

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> Script Testing </title>
 <meta charset="utf-8">
 <script>
 var div = document.getElementById("div1");
 div.innerHTML = "Testing when the browser loads a script";
 </script>
</head>
<body>
 <div id="div1"></div>
 <script>
 var div = document.getElementById("div1");
 div.innerHTML = "Testing when the browser loads a script";
 </script>
</body>
</html>

 and . Now there's no error in the conso le, and the page displays the message.

Because the browser evaluates the page from the top down, in the first version, the DOM is not ready when
the browser executes your script. In the second version, the DOM has been built and the <div> that you are
modifying exists in the DOM, so the script works. If you prefer to put your script in the <head> o f your
document, make sure any code that uses or manipulates the DOM is called from within the windo w.o nlo ad
event handler. If you've been working with JavaScript fo r a while, you already know this, but it's worth
reiterating because it's important.

The JavaScript Event Loop

Once the browser has executed your code from the top down as it loads your page, it enters into an event
loop. This loop is internal to the browser. It is basically a loop that waits fo r events to occur. If you move your
mouse, or click on an element, o r request data from another website, an event will be generated. There are
internal browser events as well. For instance, when the browser has finished loading the page, it generates
the "load" event, which will cause your windo w.o nlo ad event handler to execute, if you've defined one.

When an event happens, the browser checks to see if you've defined an event handler fo r that event; if you
have, that function is run. Once the function is complete, the browser begins the event loop again. This event
loop continues as long as the web page is loaded.

In this phase o f execution (that is, the phase when the browser is waiting for events and executing event
handlers), events can happen at any time, so your event handler functions run when they're needed, not at any
particular time or in a particular sequence.

You can disrupt the event handling process by writing code that takes up too much o f the processing power o f
your browser. Take a look at the code below.

WARNING
Feel free to type in the code below and try it, but be warned—you will probably need to
close the browser entirely to stop the code. If you do want to try it, we recommend using a
different browser from the one you're using to read the lesson.

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> Script Testing </title>
 <meta charset="utf-8">
 <script>
 window.onload = function() {
 document.onclick = function() {
 alert("You clicked on the web page!");
 }
 var div = document.getElementById("div1");
 for (var i = 0; i < 100000000000; i++) {
 div.innerHTML += i + ",";
 }
 }
 </script>
</head>
<body>
 <div id="div1"></div>
</body>
</html>

 Save this in your /AdvJS fo lder as script Erro r.ht ml, and . You may get an "unresponsive
script" dialog box, like the one below (from Firefox):

If you do, choose the option to stop the script and you may get contro l o f your browser back. However, your
browser may become entirely unresponsive. In that case, you can force quit the browser on the Mac by
pressing Opt io n+Co mmand+Escape (all at once), selecting the browser that's unresponsive, and
choosing Fo rce quit . In Windows, right-click in the taskbar, select St art T ask Manager, select the browser
application, and select End T ask.

Let's step through the code to see what's happening:

OBSERVE:

window.onload = function() {
 document.onclick = function() {
 alert("You clicked on the web page!");
 }
 var div = document.getElementById("div1");
 for (var i = 0; i < 100000000000; i++) {
 div.innerHTML += i + ",";
 }
}

First, we're running all the code in the windo w.o nlo ad event handler. This runs once the browser has
completed loading the page, so we can access the DOM safely.

We set up a click event handler o n t he do cument . That means anywhere you click on the page will
trigger this event. Once this is set up, we get t he "div1" o bject f ro m t he page , and then begin a lo o p
that will add successive integers to the content o f the <div> using innerHT ML. However, the loop end po int is
a very large number. Even for fast computers, this loop is go ing to take a long time.

Now, try clicking on the page if you want. The browser is so busy executing the loop that it is unlikely to
recognoze the event fo r a while (if ever) before you see a browser error.

Change the very large number above to 10,000:

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> Script Testing </title>
 <meta charset="utf-8">
 <script>
 window.onload = function() {
 document.onclick = function() {
 alert("You clicked on the web page!");
 }
 var div = document.getElementById("div1");
 for (var i = 0; i < 10000; i++) {
 div.innerHTML += i + ",";
 }
 }
 </script>
</head>
<body>
 <div id="div1"></div>
</body>
</html>

 and . Click on the web page as soon as it loads. You might have to wait a little while, but
you'll eventually get an alert.

The Event Queue

So, it still takes a little while fo r the browser to get through the loop, but eventually it does, and it responds to
your click. Even if you click on the page before the loop is complete, the browser doesn't fo rget the event,
because whenever an event occurs in the browser, that event is added to an event queue. The browser
handles events in order as they occur. The event queue ensures that even if multiple events are happening,
and some of the handlers for those events take a while to execute, the browser eventually gets to all o f them
(unless an event handler takes so long that it causes the browser to display an unresponsive script dialog, or
if an event handler causes an error so that your browser stops executing your script altogether).

Asynchronous Programming

Suppose you write a script that sets up a click handler fo r a mouse click, and also sends a request to get
more data using XHR (XMLHttpRequest, also known as Ajax). Your request to get more data might be

initiated right away, but if it takes a while to get the data, the event handler that will be called once the data is
received won't execute for a while. In the meantime, you can click your mouse a bunch o f times and your
mouse click event handler will execute.

The XHR request that you created to get more data is executed asynchronously. That is, the browser allows
you to do o ther things while it's waiting to get the data from the XHR request. In fact, while it's waiting for the
data, the browser goes back to executing the event loop so it can respond to o ther events. When the data you
requested with XHR is finally retrieved, your XHR event handler will be executed. Compare the way the
browser handles a synchronous loop, like we created above, with the way it handles an asynchronous
request like XHR: The loop jams up the event loop, while the XHR request does not.

Here's a quick example that uses XHR to fetch data for your application. It also sets up a click handler:

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> XHR Asynchronous Request </title>
 <meta charset="utf-8">
 <script>
 window.onload = function() {
 document.onclick = function() {
 alert("You clicked on the web page!");
 }
 var request = new XMLHttpRequest();
 request.open("GET", "data.json");
 request.onreadystatechange = function(response) {
 var div = document.getElementById("div1");
 if (this.readyState == this.DONE && this.status == 200) {
 if (response != null) {
 div.innerHTML = this.responseText;
 }
 else {
 div.innerHTML += "
Error: Problem getting data";
 }
 }
 else {
 div.innerHTML += "
Error: " + this.status;
 }
 }
 request.send();
 }
 </script>
</head>
<body>
 <div id="div1"></div>
</body>
</html>

If you want to try this code tand see these events in action, save the file in your /AdvJS fo lder as
event Queue.ht ml. Create a file named dat a.jso n in the same fo lder. You can put any JSON data in the file,
like this:

OBSERVE:

["test data"]

 Preview the event Queue.ht ml file. [" t est dat a"] appears in the web page. You can click on
the page to see the alert.

Our data is small so it doesn't take much time to retrieve, so the browser will load your JSON data far too fast
for you to be able to click on the page before it does. Still, you can see from the code that we're setting up two
events: one will occur whenever you click the mouse, and the o ther will occur when the data in the file
"data.json" has been retrieved. We have no way o f knowing which will occur first (but we can make an
educated guess because you can't click the mouse fast enough). If you never click the mouse, then the

mouse click event will never happen.

If you replace the small amount o f data here with a much larger amount o f data, you might be able to delay the
loading long enough to click the mouse. Give it a try if you want.

Remember, JavaScript in the browser is event-driven; once the browser has loaded and executed your code
in the first phase (as it loads the page), the second phase responds to events, which makes your web pages
interactive.

Also keep in mind that some actions, like XHR requests, are executed asynchronously. We set up XHR event
handlers like we do o ther kinds o f event handlers: by assigning a function to a property on an object, in this
case, the XMLHttpRequest object. The event handler is called when the data requested by the XHR request
has been returned to the browser. We don't know precisely when the event will occur, and because the
browser doesn't stop the event loop while it's waiting for the data, we can continue to interact with the browser
and run o ther code.

JavaScript in Environments Other Than the Browser

You're using JavaScript in the browser, but much o f what you've learned in this course applies to JavaScript
in o ther environments as well..

For instance, if you're writing a JavaScript script fo r Photoshop, the main entry po int fo r access to the
Photoshop environment is the app object. For more about writing JavaScript fo r Photoshop, check out the
links here: http://www.adobe.com/devnet/photoshop/scripting.html. Of course, o ther Adobe products also
offer scripting capabilities.

Another JavaScript environment that is rising in popularity is Node.js. Node.js allows you to run JavaScript at
the command line, and you can use Node.js to serve web pages and run web services. If you download and
install Node.js, you can experiment with it by running no de at a command line. Interact with it just like you
would the JavaScript conso le in the browser, execpt that you won't have all the built- in browser objects;
instead, you'll have built- in Node.js objects. Here's a sample interactive session from my own computer (you
won't be able to reproduce this unless you install Node.js, which is not necessary for this course; we're just
showing this session in case you're interested):

INTERACTIVE SESSION:

[elisabeth-robsons-mac-pro]% node
> var i = 3;
undefined
> i
3
> console.log("i is " + i)
i is 3
undefined
> require("os")
{ endianness: [Function],
 hostname: [Function],
 loadavg: [Function],
 uptime: [Function],
 freemem: [Function],
 totalmem: [Function],
 cpus: [Function],
 type: [Function],
 release: [Function],
 networkInterfaces: [Function],
 arch: [Function],
 platform: [Function],
 tmpdir: [Function],
 tmpDir: [Function],
 getNetworkInterfaces: [Function: deprecated],
 EOL: '\n' }
> os.arch()
'x64'
> os.uptime()
28466
>

http://www.adobe.com/devnet/photoshop/scripting.html
http://nodejs.org/api/

As you can see, the first part o f this session looks just like a session in the browser's JavaScript conso le.

However, about half way through we write require("o s") . This loads a Node.js module, which is just a library
of JavaScript code (similar to if you linked to a library like jQuery from a web page). Once we've loaded this
module, we have access to another object, o s, that can give us information about the operating system on
which we're we're running Node.js. JavaScript can't do this in the browser because the JavaScript in the
browser executes in a sandbox: a special area o f the browser that pro tects your system from any code that is
downloaded and executed in the browser (which helps to prevent JavaScript viruses).

If you want to explore another JavaScript environment, you'll find that you can apply much o f the information
you've learned so far to that environment, but you'll also need to learn about the environment's extensions to
understand how to use JavaScript within that environment.

The JavaScript objects that browsers provide for you to manipulate the browser are based largely on specifications written by
the W3C (the World Wide Web Consortium). While most browser manufacturers have agreed that we are all better o ff if
browsers support the same features (so we don't have to write different code for different browsers), various browser makers
are always thinking up coo l new features to add. Some of these features make it into the specifications and are implemented by
the o ther browsers, and some do not.

All o f the browser extensions we've talked about in this course are supported by the most recent versions o f all the major
browsers. To use cutting-edge features that are being added into browsers, test fo r those features, either by writing the test code
yourself, o r by using a JavaScript library like Modernizr. Testing for features rather than a specific browser ensures that your
code will be forward-compatible: that is, if a user doesn't have a browser that supports that feature now, they may in the future,
so your web applications will work for them.

Libraries, like jQuery and Underscore.js (and many o thers), can also help with browser compatibility. These libraries provide
what are called "shims" that provide fallback behavior fo r features that aren't supported by all browsers.

To learn more about the specifications that (largely) determine which features browsers support, check out the W3C TR page
(start at the DOM, DOM events, and JavaScript APIs TRs and go from there). In addition, each browser maker will have
documentation on their sites about features supported by each o f their individual browsers:

Safari Developer Center
MDN Developer Network
Chrome Developer Site
IE Developer Site
Opera Developer Site

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://w3.org
http://modernizr.com
http://jquery.com
http://underscorejs.org
http://www.w3.org/TR/
https://developer.apple.com/devcenter/safari/index.action
https://developer.mozilla.org/en-US/
https://developers.google.com/chrome/
http://msdn.microsoft.com/en-us/ie/aa740469.aspx
http://www.opera.com/developer
http://creativecommons.org/licenses/by-sa/3.0/legalcode

ECMAScript 5.1
Lesson Objectives

When you complete this lesson, you will be able to :

describe the most recent version o f the standard on which JavaScript is based, ECMAScript 5.1.
use strict mode to prevent common mistakes.
explore new methods added in ES5.
use object property descriptors to contro l access to objects.
create objects based on your own pro to types.

The ECMAScript Standard for JavaScript
JavaScript has a convo luted history, but the good news is that all the major browsers now (mostly) support a standard
version o f JavaScript. With a standard for the core language and standard for the browser extensions (as we talked
about in the previous lesson), working with JavaScript is much better now than in the o ld days when we had to write
different JavaScript fo r each different browser. What a mess that was!

The standard for the core JavaScript language is described in the EMCAScript specification, maintained by the ECMA
International organization, an international, private (membership-based), non-pro fit standards organization for
information and communication systems. The current version o f the ECMAScript standard for JavaScript is 5.1. You
can find the specification o f the standard at http://www.ecma-international.org/publications/standards/Ecma-262.htm
[PDF]. (An HTML version is also available).

Version 5.1 (which we o ften refer to as ES5) o f the standard was completed in 2011; major browsers implement much
of the standard today. Fortunately, version 5.1 is completely backward-compatible with the previous version (3.1; don't
ask what happened to version 4), so you don't have to unlearn anything to learn the new stuff in version 5.1. Here's a
handy compatibility table that describes browser support fo r various ES5 features. We'll experiment with some of these
features in this lesson, so make sure you've got the most recent version o f your favorite browser installed.

There are quite a few minor changes in the ES5 version o f the language, a few interesting additions to Objects, and a
new strict mode that we'll explore. Keep in mind that the language specification is fo r the core language, and does not
refer to the browser extensions we explored in the previous lesson.

Strict Mode

Despite what we just said about not having to unlearn anything for ES5, there are a few things you can do in
JavaScript that you really shouldn't be allowed to do. (You haven't been do ing those things in this course, but
it's a good idea for you to know about them.) Some of these quirks have been deprecated in ES5. That means
they are no longer supported in the language, but browsers will still let you do them (as part o f the backwards
compatibility with the previous version o f the standard). Here's an example:

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> </title>
 <meta charset="utf-8">
 <script>
 myVar = "I'm not declared!";
 </script>
</head>
<body>
</body>
</html>

 Save this in your /AdvJS fo lder as st rict .ht ml, and . Open the conso le and type the
command shown:

http://www.w3.org/community/webed/wiki/A_Short_History_of_JavaScript
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/ecma-262/5.1/
http://kangax.github.io/es5-compat-table/

INTERACTIVE SESSION:

> myVar
"I'm not declared!"

You see the value o f the string in the variable myVar. The problem with this code is that you didn't declare the
variable myVar. As we discussed earlier in the course, this is not good. We always want you to declare your
variables. Also, try to keep the number o f global variables you use to a minimum.

ES5 has introduced a new mode, called strict mode, to help you catch these errors. When you are in strict
mode, you can't assign a value to a variable that hasn't been declared. Here's how you put your code into
strict mode:

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> </title>
 <meta charset="utf-8">
 <script>
 "use strict";
 myVar = "I'm not declared!";
 </script>
</head>
<body>
</body>
</html>

 and . In the conso le you see this error (or something similar if you're using a browser o ther
than Chrome):

OBSERVE:

Uncaught ReferenceError: myVar is not defined

In strict mode, you're not allowed to make this mistake. To fix the mistake, add the "var" keyword in front o f the
variable:

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> </title>
 <meta charset="utf-8">
 <script>
 "use strict";
 var myVar = "I'm notI am declared!";
 </script>
</head>
<body>
</body>
</html>

 and . In the conso le, you no longer see the error, and you can type "myVar" and see its value.

You can use "use strict" at the global level, as well as inside individual functions. If you put "use strict" at the
global level, it affects all your code. If you put it inside a function only, it will affect just the code in that function.
So you could put all your strict code into an IIFE, like this:

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> </title>
 <meta charset="utf-8">
 <script>
 "use strict";
 var myVar = "I am declared!";
 (function() {
 "use strict";
 innerMyVar = "I'm not declared in this function either.";
 })();

 </script>
</head>
<body>
</body>
</html>

 and . In the conso le, you'll see a reference error. You can fix it by adding "var" in front o f the
variable innerMyVar.

Let's look at one o ther way that strict mode can help prevent mistakes:

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> </title>
 <meta charset="utf-8">
 <script>
 (function() {
 "use strict";
 var innerMyVar = "I'm not declared in this function either.";

 var o = {
 x: 3,
 x: 10
 };
 })();
 </script>
</head>
<body>
</body>
</html>

We added an object, o , and we defined the property o .x twice in the object definition. Let's see what happens

in strict mode. and . In the conso le, you see an error (in Chrome):

OBSERVE:

Uncaught SyntaxError: Duplicate data property in object literal not allowed in s
trict mode

Previously, it was perfectly allowable to define the same property twice in an object (although not a good
idea). Try it and see what happens (you can try it by commenting out the "use st rict "; line with //). In strict
mode, we can't do this anymore, and the browser generates an error that describes the problem.

Strict mode can help you write cleaner and better code. Strict mode will help you with o ther tasks as well;
check out the MDN Developer Network's strict mode page for more.

The way we tell the browser to use strict mode might seem a little odd; after all, it's just a string, "use strict."

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions_and_function_scope/Strict_mode

Why do you think the language designers decided to do it this way?

Thhey did it this way because so that o lder browsers that don't support strict mode could safely ignore the
statement. To o lder browsers, "use strict" is simply a string and won't affect how your code runs at all. To
newer browsers, o f course, the string causes the browser to go into strict mode. This means you can use
strict mode in your code without worrying that o lder browsers won't be able to run the code. However, pay
particular attention if you are linking to multiple scripts in your page. You can combine scripts if they are all
strict, o r all non-strict, but you can't mix the two! Make sure you know the mode o f all o f your scripts use
before linking to them.

New Methods

There are a few new methods that have been added to objects in the language. Let's check out some of the
most useful o f them.

For strings, the t rim() method is now part o f the language. Browsers have implemented this fo r a while. The
useful t rim() method removes white space at the beginning and ending o f a string:

INTERACTIVE SESSION:

> var s = " Lots of white space here ";
undefined
> s
" Lots of white space here "
> s.trim()
"Lots of white space here"

Nice! It's possible to implement a t rim() function yourself, as you saw in an earlier pro ject, but it's so much
nicer to have it built into the language.

There are some new array methods too:

INTERACTIVE SESSION:

> var a = [1, 2, 3];
undefined
> a
[1, 2, 3]
> a.forEach(function(x, i, a) { a[i] = x + 1; });
undefined
> a
[2, 3, 4]

Here, we define an array a, and then use the f o rEach() method to apply a function to each element o f the
array. (This may seem familiar to you, since you've already implemented your own f o rEach() function earlier
in the course.) f o rEach() takes a function, and applies that function to each element o f the array to change it.
The three parameters o f the function are x (the value o f the current array item to which the function is being
applied), i (the index o f the current array item), and a (the array itself). Our function adds 1 to each item in the
array. Notice that the f o rEach method doesn't return anything, but (in this case) our function modifies the
array directly.

Now let's try the map() method (you've seen this before):

INTERACTIVE SESSION:

> var b = a.map(function(x) { return x * 2; });
undefined
> b
[4, 6, 8]
> a
[2, 3, 4]

map() applies a function to each item in the array, and creates a new array out o f the return values from the
function. Here, we multiply each item in a by 2, and store the resulting values in a new array named b. Notice
that a doesn't change.

ES5 defines a few other useful array methods you should check out, including isArray() , every() , so me() ,
f ilt er() and reduce() .

Object Property Descriptors

In ES5, objects are quite a bit more complex. Fortunately, you don't have to change the way you create and
use objects. These new features are useful, but definitely not required.

The big change in objects is that an object property now comes with a property descriptor. In fact, assuming
you're using a browser that implements the ES5 standard for JavaScript, the objects you've been creating in
this course all have properties with property descriptors, you just didn't know it. You already know that an
object property has a value. In addition, properties now have three o ther attributes: writ able , enumerable ,
and co nf igurable . These three attributes are all optional, and are all true by default. Let's check them out:

INTERACTIVE SESSION:

> var o = { x: 1 }
undefined
> Object.getOwnPropertyDescriptor(o, "x")
Object { value: 1, writable: true, enumerable: true, configurable: true }

We define a simple object o , with just one property o .x which has the value 1.

Then we use a method o f Object (which, remember, is the parent object o f all o ther objects in JavaScript),
Object .get OwnPro pert yDescript o r() to get the property descriptor fo r the property x. We pass in both the
object and the name of the property (as a string) as arguments to the method, and get back the property
descriptor.

The property descriptor shows the value o f the property, 1, as well as the values for the attributes writable,
enumerable, and configurable. Let's talk about these attributes.

If writ able is t rue , then you can change the value o f an attribute:

INTERACTIVE SESSION:

> o.x = 10
10
> o
Object { x: 10 }

Just like you'd expect, that's the default behavior. So, what if you want to change it? There are a couple o f
ways you can do that. One is to modify the attributes o f the property descriptor directly using an Object
method, Object .def inePro pert y() . We'll try this approach now, but there's a simpler way to change an
object to prevent its properties from being writable that we'll look at a bit later.

INTERACTIVE SESSION:

> Object.defineProperty(o, "x", { writable: false });
Object { x: 10 }
> o.x = 20;
20
> o.x
10

The Object .def inePro pert y() method takes three arguments: the object whose property you want to
modify, the property name (and note that this is a string), and an object with the attribute you want to modify. In
this case, we've passed an object setting the writ able attribute to f alse . We then try to change the value o f

the property o .x to 20, and we can't; the value o f o .x is still 10 . Note that we don't get an error! The
assignment is simply ignored. That's because we're not using strict mode in the conso le. Let's try the same
operation using strict mode. Modify st rict .xml as shown:

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> </title>
 <meta charset="utf-8">
 <script>
 (function() {
 "use strict";
 var innerMyVar = "I'm not declared in this function either.";

 var o = {
 x: 3,
 x: 10
 };
 Object.defineProperty(o, "x", { writable: false });
 o.x = 20;
 })();
 </script>
</head>
<body>
</body>
</html>

Here, we define an object o , change the property x so that it's not writable, and then attempt to set the value o f

x to 20. and . In the conso le, you see this error (in Chrome):

OBSERVE:

Uncaught TypeError: Cannot assign to read only property 'x' of #<Object>

So, in strict mode, attempting to set the value o f a property that's not writable will generate an error; if you're
not in strict mode, the assignnment will fail, but you won't get an error (and your code will continue to
execute). We'll continue to work in the conso le, but we'll no te where an operation that's ignored in the
conso le would generate an error in strict mode.

Keep in mind that when you modify an attribute o f a property using Object .def inePro pert y() , you're not
modifying an attribute o f the entire object; you're modifying only an attribute o f a specific property in the object.
Every property that you add to the object will have its own set o f attributes. Let's try adding a new property to
o :

INTERACTIVE SESSION:

> var o = { x: 10 }
undefined
> Object.defineProperty(o, "x", { writable: false });
Object {x: 10}
> o.y = 20;
20
> o
Object {x: 10, y: 20}
> Object.getOwnPropertyDescriptor(o, "x");
Object { value: 10, writable: false, enumerable: true, configurable: true }
> Object.getOwnPropertyDescriptor(o, "y");
Object { value: 20, writable: true, enumerable: true, configurable: true }

First we add a new property to o ; that works as usual. Then we display the property descriptors for the two
properties. You can see that o .x is not writable, while o .y is (because writ able is t rue by default).

Okay, we've explored the writ able attribute, now what about enumerable? This property indicates that you
can enumerate the property when you loop through the object's properties (or use one o f the new Object
methods to display properties). Let's give it a try:

INTERACTIVE SESSION:

> o
Object { x: 10, y: 20 }
> for (var prop in o) { console.log(prop); }
x
y
⋖ undefined

Our object o has two properties and both are currently enumerable (take a look back at the enumerable
attribute for both properties above, and you'll see that both attribute values are true). That means when we
enumerate them by looping through all the property names in the object using the f o r loop above, we can
see both property names.

ES5 has added two o ther methods for enumerating object property names: Object .keys() and
Object .get OwnPro pert yNames() . Let's try both o f these methods to enumerate the property names in o :

INTERACTIVE SESSION:

> Object.keys(o);
["x", "y"]
> Object.getOwnPropertyNames(o);
["x", "y"]

In both cases, the result is an array o f property names. These new methods for retrieving the property names
of an object (added in ES5) are really efficient. When you use them, you don't have to write a loop to access
each property name.

Now, let's try making the o .y property's enumerable attribute f alse :

INTERACTIVE SESSION:

> Object.defineProperty(o, "y", { enumerable: false });
Object { x: 10 }
> o
Object { x: 10 }
> Object.getOwnPropertyDescriptor(o, "y");
Object { value: 20, writable: true, enumerable: false, configurable: true }
> Object.keys(o);
["x"]
> Object.getOwnPropertyNames(o);
["x", "y"]

First, we set the enumerable attribute o f o .y to f alse . You can see right away that when we display the
object, we no longer see the y property. That means the Object .t o St ring() method can't "see" properties
that aren't enumerable.

We get the property descriptor fo r o .y and see that indeed, the enumerable attribute has been set to f alse .
When we use the Object .keys() method to retrieve the property names in the object o , we no longer see "y"
in the resulting array. So the Object .keys() method can't "see" properties that aren't enumerable either.

Finally, we use the Object .get OwnPro pert yNames() method to get the property names and again we see
"y" in the results.

So, we have a way o f hiding property names when an object is displayed, or when we try to enumerate the
property names with any method except Object .get OwnPro pert yNames() .

Now, let's look at the co nf igurable attribute. Once you set this attribute to false, you can't change it back
because the property is no longer configurable. If a property isn't configurable, it can't be deleted from the
object.

INTERACTIVE SESSION:

> o.z = 3;
3
> o
Object {x: 10, z: 3}
> Object.defineProperty(o, "z", { configurable: false });
Object {x: 10, z: 3}
> o.z = 4;
4
> o
Object {x: 10, z: 4}
> delete o.z
false
> Object.defineProperty(o, "z", { configurable: true });
TypeError: Cannot redefine property: z

First, we add a new property, o .z and set its value to 3. Then we change the o .z property's co nf igurable
attribute to f alse . We can still change the value o f the property, which we do, setting it to 4, but we can't delete
the property, o r set its co nf igurable attribute back to t rue .

Note Attempting to delete a non-configurable property in strict mode generates the error: Uncaught
T ypeErro r: Canno t delet e pro pert y 'z' o f #<Object >

These attributes allow you to have a lo t more contro l over your objects' properties.

Sealing and Freezing Objects

There are two shortcut methods you can use to set property descriptor attributes and help pro tect your
objects.

The first o f these is Object .seal() . This method sets the co nf igurable attribute o f every property in the
object to f alse , and also disallows the addition o f any new properties to the object. You can still read, write,
and enumerate the properties in the object; you just can't remove properties or add new ones.

INTERACTIVE SESSION:

> var myObject = {
 name: "Elisabeth",
 course: "Advanced JavaScript",
 year: 2013
 };
undefined
> myObject
Object {name: "Elisabeth", course: "Advanced JavaScript", year: 2013}

> Object.getOwnPropertyDescriptor(myObject, "name");
Object {value: "Elisabeth", writable: true, enumerable: true, configurable: true
}
> Object.getOwnPropertyDescriptor(myObject, "course");
Object {value: "Advanced JavaScript", writable: true, enumerable: true, configur
able: true}
> Object.getOwnPropertyDescriptor(myObject, "year");
Object {value: 2013, writable: true, enumerable: true, configurable: true}

> Object.seal(myObject);
Object {name: "Elisabeth", course: "Advanced JavaScript", year: 2013}

> Object.getOwnPropertyDescriptor(myObject, "name");
Object {value: "Elisabeth", writable: true, enumerable: true, configurable: fals
e}
> Object.getOwnPropertyDescriptor(myObject, "course");
Object {value: "Advanced JavaScript", writable: true, enumerable: true, configur
able: false}
> Object.getOwnPropertyDescriptor(myObject, "year");
Object {value: 2013, writable: true, enumerable: true, configurable: false}

> myObject.newProperty = "attempting to add a new property";
"attempting to add a new property"
> myObject
Object {name: "Elisabeth", course: "Advanced JavaScript", year: 2013}
> Object.keys(myObject);
["name", "course", "year"]
> myObject.name = "Scott";
Object {name: "Scott", course: "Advanced JavaScript", year: 2013}

First, we define a new object, myObject , with three properties: name , co urse , and year. By default, the
attributes in the property descriptor fo r each o f these properties are t rue , which we can see by inspecting
them using Object .get OwnPro pert yDescript o r() . (Unfortunately, there's no way to see the property
descriptors o f all the properties at once).

Next, we "seal" the object, by calling Object .seal() , and passing in the object myObject . This changes the
co nf igurable attribute o f each o f the properties to f alse .

We try to add a new property to the object, myObject .newPro pert y. We don't get an error message when
we try to do this (because we're not in strict mode), but the assignment is ignored, and the property is not
added to the object. When we use the Object .keys() method to display the property names in the object, we
can see that no new property is added.

Finally, we change the value o f the myObject .name property from "Elisabeth" to "Scott," just to prove that
even if the object is sealed, we can still change the value o f the properties.

Note
If you try to add a new property to myObject (which is sealed) in strict mode, you'll get the error
message Uncaught T ypeErro r: Can't add pro pert y newPro pert y, o bject is no t
ext ensible .

You can check to see if an object is sealed using the Object .isSealed() method:

INTERACTIVE SESSION:

> Object.isSealed(myObject)
true

A similar method is Object .f reeze() . It works like Object .seal() , but in addition, it sets the writ able
attribute o f all the property descriptors to f alse , so you can't change the value o f properties:

INTERACTIVE SESSION:

> Object.freeze(myObject);
Object {name: "Scott", course: "Advanced JavaScript", year: 2013}
> myObject.name = "Elisabeth"
"Elisabeth"
> myObject
Object {name: "Scott", course: "Advanced JavaScript", year: 2013}

You can find out if an object is frozen using the Object .isFro zen() method.

Note
If you try to set the value o f a property in a frozen object in strict mode, you'll get the error
message Uncaught T ypeErro r: Canno t assign t o read o nly pro pert y 'name' o f
#<Object > .

The Object .seal() and Object .f reeze() methods are useful fo r pro tecting your objects while still allowing
access to the properties (both for reading the value o f the properties and for enumerating the properties).

Both Object .seal() and Object .f reeze() disallow new properties from being added to objects by setting
them to non-extensible. You can do this yourself (separately) using the Object .prevent Ext ensio ns()
method, and determine whether an object is extensible using the Object .isExt ensible() method.

We left the description o f these recent capabilities o f JavaScript objects until the end o f the course because
they are recent additions and as such are not used much yet. Still, it's important to know that they are available
if and when you do need them. You probably will in certain situations like when you want to make sure that an
object is pro tected from change. In addition, it's likely that these features will be used in future additions to the
language.

Creating Objects

Another new method o f Object that was added in ES5 is the Object .creat e() . You already know how to
create objects by writing a literal object, and by using a constructor.

Object .creat e() is a little different because it allows you to create an object and specify its pro to type. So if
you create an object, like the Perso n object below, you can then create objects that use Perso n as their
pro to type (meaning those objects inherit the properties and methods o f the Perso n object):

CODE TO TYPE:

<!doctype html>
<html>
<head>
 <title> Creating Objects </title>
 <meta charset="utf-8">
 <script>
 var Person = {
 welcome: function() {
 console.log("Welcome " + this.name + "!");
 },
 isAdult: function() {
 if (this.age > 17) {
 return true;
 }
 }
 };

 var bob = Object.create(Person);
 bob.name = "Bob Parsons";
 bob.age = 42;

 bob.welcome();
 if (bob.isAdult()) {
 console.log(bob.name + " can get a beer");
 }

 var mary = Object.create(Person);
 mary.name = "Mary Smith";
 mary.age = 12;

 mary.welcome();
 if (!mary.isAdult()) {
 console.log("Sorry, " + mary.name + " can't get a beer");
 }
 </script>
</head>
<body>
</body>
</html>

 Save the file in your /AdvJS/ fo lder as creat eObject s.ht ml and . Open the conso le; you
see:

OBSERVE:

Welcome Bob Parsons!
Bob Parsons can get a beer
Welcome Mary Smith!
Sorry, Mary Smith can't get a beer

We made these variables global so you can access them in the conso le. Try this:

INTERACTIVE SESSION:

> Person.isPrototypeOf(bob)
true
> Person.isPrototypeOf(mary)
true
> bob
Object {name: "Bob Parsons", age: 42, welcome: function, isAdult: function}
> mary
Object {name: "Mary Smith", age: 12, welcome: function, isAdult: function}

The Perso n object is the pro to type o f both bo b and mary, and those objects do indeed inherit the properties
from Perso n. (So, what happens when you use Object .keys() to get the property names o f bo b and mary?
Why?)

However, note that because we created bo b and mary using Object .creat e() and not a constructor, when
you look at the constructor o f bo b like this:

INTERACTIVE SESSION:

> bob.constructor
function Object() { [native code] }
> bob
Object {name: "Bob Parsons", age: 42, welcome: function, isAdult: function}

...you can see that the constructor is Object () . bo b and mary are created using the Object () constructor
behind the scenes and then explicitly changing the pro to type object to Perso n. You can see this reflected
also when we display bo b in the conso le: you see "Object" as the "type" o f the object, even though the
proto type o f the object is Perso n.

Whenever you create an object using a constructor, that object gets a pro to type that is stored in the
constructor's pro t o t ype property. Recall that we created a circle by writing new Circle() , and the resulting
object's pro to type was the Circle object in Circle .pro t o t ype . Contrast that way o f creating objects with
using Object .creat e() . Object .creat e() allows you to assign the pro to type o f an object without (explicitly)
using a constructor (although the Object () constructor is used behind the scenes).

In addition, with Object .creat e() you can pass a second argument to the method containing an object that
specifies attributes for the properties:

INTERACTIVE SESSION:

> var jim = Object.create(Person, {
 name: {
 value: "Jim Smith",
 writable: false
 },
 age: {
 value: 42,
 writable: false
 }
});
undefined
> jim.name
"Jim Smith"
> jim.age
42
> jim.welcome()
Welcome Jim Smith!
⋖ undefined
> jim.isAdult()
true
> jim.name = "Joe Schmoe"
"Joe Schmoe"
> jim.welcome()
Welcome Jim Smith!

Here, we create a new object using Object .creat e() , and pass the Perso n object to use as the pro to type.
We also pass an object that defines the values o f the properties and their attributes for the new object.
Because we set both properties so they are not writable, we can't change the values in the object jim .

Note If you try to change the value o f jim.name in strict mode, you see the error message Uncaught
T ypeErro r: Canno t assign t o read o nly pro pert y 'name' o f #<Object > .

So, Object .creat e() gives you an efficient way to create a pro to type chain for objects in JavaScript.

In this lesson, you've learned about some of the new features o f JavaScript that were added in ES5 (or ECMAScript 5.1
specification). If you're running the most recent version o f a modern browser, then it's likely you can use all o f these new
features.

Developers are already hard at work on the ECMAScript 6 specification for the next version o f JavaScript (code-named
Harmony). You can see the specification in progress at the ECMAScript wiki. As o f this writing, the creation o f the new
specification is underway, so many o f the new features are not available in browsers. The changes will be more extensive than
the changes in ES5, including the addition o f block scope, classes, and modules. Exciting!

You've come a long way in this course, exploring much o f the JavaScript language including types and values, functions,
objects, and closures. You've also worked with techniques for programming such as using the Module pattern to reduce global
variables and keep parts o f objects private. Well done! We look forward to seeing what you do in your final pro ject!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://wiki.ecmascript.org/doku.php?id=harmony:specification_drafts
http://creativecommons.org/licenses/by-sa/3.0/legalcode

	Getting the Type of a Value with Typeof
	Null and Undefined
	To Infinity (But Not Beyond)
	Not a Number
	Adding and Deleting Properties
	What's the Type of an Object?
	Shortcuts using truthy and falsey results
	Using Closures to Create Private Data
	Closures as Click Handlers

